Реактивная торпеда «Шквал. Основные технические характеристики торпед ссср. Из истории развития и боевого применения

Тактико-технические характеристики

Тип 53-56
Тип: самонаводящаяся или телеуправляемая корабельная / лодочная торпеда.
Размеры: диаметр 533 мм (21 дюйм); длина 7,7 м (25 футов 1/4 дюйма).
Общая масса: 2000 кг (4409 фунтов); масса боевой части 400 кг (882 фунта).
Дополнительные данные: дальность / скорость хода 8000 м (8750 ярдов) при 50 уз. и 13 000 м (14 215) при 40 уз.

Тип 65-73
Тип: самонаводящаяся лодочная противокорабельная торпеда
Размеры: диаметр 650 мм (26,6 дюйма); длина 11 м (36 футов 1 дюйм).
Общая масса: более 4000 кг (8818 фунтов); боевая часть с ядерным зарядом.
Дополнительные данные: дальность / скорость хода 50 км (31 миля) при 50 уз.


Советские торпеды, как и западные, можно разделить на две категории - тяжелые и легкие, в зависимости от предназначения. Во-первых, известны два калибра - стандартный 533 мм (21 дюйм) и более поздний - 650 мм (25,6 дюйма). Полагают, что торпедное оружие калибра 533 мм развивалось на основе немецких конструктивных решений периода Второй мировой войны и включало прямоидущие и маневрирующие торпеды с парогазовой или электрической энергосиловой установкой, предназначенные для поражения надводных целей, а также торпеды с акустическим пассивным самонаведением в противолодочном и противокорабельном вариантах. Удивительно, но большая часть современных больших надводных боевых кораблей была оснащена многотрубными торпедными аппаратами для противолодочных торпед с акустическим наведением.

Также была разработана специальная 533-мм торпеда с 15-килотонным ядерным зарядом, не имевшая системы наведения на конечном участке траектории, состоявшая на вооружении многих подводных лодок и предназначенная для поражения важных надводных целей, таких, как авианосцы и супертанкеры. На борту подводных лодок поздних поколений также находились огромные 9,14-метровые (30-футовые) противокорабельные торпеды типа 65 калибр 650 мм. Полагают, что их наведение осуществлялось по кильватерному следу цели, была предусмотрена возможность выбора скорости 50 или 30 уз, а дальность хода составляла соответственно 50 и 100 км (31 или 62 мили). С такой дальностью хода торпеды типа 65 дополняли возможности внезапного применения противокорабельных крылатых ракет, стоявших на вооружении ракетных подводных лодок типа «Чарли» и впервые позволили советским АПЛ осуществлять стрельбу торпедами из районов вне зоны действия противолодочного охранения конвоя.


Противолодочные силы, включая авиацию, надводные корабли и подводные лодки, долгие годы использовали легкую электрическую торпеду калибра 400 мм (15,75 дюйма) с меньшей дальностью хода. Она позднее была дополнена, а затем и вытеснена применявшейся противолодочными самолетами и вертолетами торпедой большего калибра 450 мм (17,7 дюйма), которая, как полагали, имела больший заряд, увеличенную дальность хода и усовершенствованный блок наведения, что в совокупности делало ее более смертоносным средством поражения.
Оба применявшихся с воздушных носителей типа торпед оснащались парашютами для уменьшения скорости вхождения в воду. Согласно ряду сообщений, также была разработана короткая 400-мм торпеда для кормовых торпедных аппаратов первого поколения атомных подводных лодок типов «Хотел», «Эхо» и «Новембер». На последующих поколениях атомных подводных лодок, видимо, ряд стандартных торпедных аппаратов калибра 533 мм был оснащен внутренними втулками для их применения.

Типичным взрывным механизмом, применявшимся на советских торпедах, был магнитный дистанционный взрыватель, обеспечивавший детонацию заряда под корпусом цели с тем, чтобы разрушить киль, дополненный вторым контактным взрывателем, приводившимся в действие при прямом попадании.

Как сообщила газета "Известия", ВМФ России принял на вооружение новую торпеду "Физик-2". Как сообщается, данная торпеда предназначена для вооружения новейших подводных ракетоносцев проекта 955 "Борей" и многоцелевых атомных подводных лодок нового поколения проекта 885855М "Ясень".

До недавнего времени ситуация с торпедным оружием для ВМФ России была довольно безрадостной - несмотря на наличие современных атомных подводных лодок третьего поколения и появление новейших подводных лодок четвёртого поколения, их боевые возможности существенно ограничивались имеющимся торпедным оружием, существенно уступающим не только новым, но и уже в значительной степени устаревшим образцам зарубежных торпед. Причём не только американских и европейских, но и даже китайских.

Основной задачей советского подводного флота была борьба с надводными кораблями вероятного противника, в первую очередь с американскими конвоями, которые в случае перерастания Холодной войны в "горячую" должны были доставлять в Европу американские войска, вооружение и военную технику, различные припасы и средства материально-технического обеспечения. Наиболее совершенными в советском подводном флоте были "тепловые" торпеды 53-65К и 65-76 , предназначенные для поражения кораблей - они имели для своего времени высокие скоростные характеристики и дальность хода, а также уникальную систему лоцирования кильватерного следа, позволявшую "улавливать" кильватерный след вражеского корабля и следовать вдоль него до момента попадания в цель. При этом они обеспечивали полную свободу манёвра для подводной лодки-носителя после пуска. Особенно эффективной была монструозная торпеда 65-76 калибром 650 миллиметров. Она имела огромную дальность хода - 100 километров при скорости 35 узлов и 50 километров при скорости в 50 узлов, а мощнейшей 765-кг боевой части хватало, что бы нанести тяжёлые повреждения даже авианосцу (для потопления авианосца требовалось всего несколько торпед) и гарантированно потопить одной торпедой корабль любого другого класса.

Однако появление в 1970-х появились так называемые универсальные торпеды - они одинаково эффективно могли применяться как против надводных кораблей, так и против подводных лодок. Появилась и новая система наведения торпед - телеуправление. При данном способе наведения торпеды команды управления на неё передаются при помощи разматываемого провода, что позволяет легко "парировать" манёвры цели и оптимизировать траекторию движения торпеды, что в свою очередь позволяет расширить эффективную дальность применения торпеды. Однако в области создании универсальных телеуправляемых торпед в Советском Союзе не удалось добиться никаких существенных успехов, более того, советские универсальные торпеды уже тогда существенно уступали своим зарубежным аналогам. Во-первых, все советские универсальные торпеды были электрическими, т.е. приводимые в движение электроэнергией от размещённых на борту аккумуляторов. Они более просты в эксплуатации, имеют меньшую шумность при движении и не оставляют демаскирующего следа на поверхности, но в то же время по дальности и скорости хода очень существенно проигрывают парогазовым или т.н. "тепловым" торпедам. Во-вторых, высочайший уровень автоматизации советских подводных лодок, включая систему автоматического заряжания торпедных аппаратов, накладывал конструктивные ограничения на торпеду и не позволил реализовать т.н. шланговую систему телеуправления, когда катушка с кабелем телеуправления находится в торпедном аппарате. Вместо этого пришлось использовать буксируемую катушку, что резко ограничивает возможности торпеды. Если шланговая система телеуправления позволяет свободно маневрировать подлодке после пуска торпеды, то буксируемая манёвры после пуска крайне ограничивает - в таком случае гарантированно порвёт кабель телеуправления, более того, имеется и высокая вероятность его обрыва от набегающего потока воды. Буксируемая катушка также не позволяет осуществлять залповую торпедную стрельбу.

В конце 1980-х годов были начаты работы по созданию новых торпед, но из-за распада Советского Союза они были продолжены лишь в новом тысячелетии. В результате, российские подводные лодки остались с малоэффективными торпедами. Основная универсальная торпеда УСЭТ-80 имела совершенно неудовлетворительные характеристики, а имевшиеся противолодочные торпеды СЭТ-65, имевшие неплохие характеристики в момент принятия их на вооружение в 1965 году, уже морально устарели. В начале 21 века была снята с вооружения торпеда 65-76, которая в 2000 году стала причиной потрясшей всю страну катастрофы подводной лодки "Курск". Российские многоцелевые подводные лодки лишились своей "дальней руки" и самой эффективной торпеды для борьбы с надводными кораблями. Таким образом, к началу текущего десятилетия ситуация с торпедным оружием подводных лодок была совершенно удручающей - они имели крайне слабые возможности в дуэльной ситуации с вражескими подводными лодками и ограниченные возможности по поражению надводных целей. Впрочем последнюю проблемы удалось частично преодолеть путём оснащение с 2011 года подводных лодок модернизированными торпедами 53-65К, которые возможно получили новую систему самонаведения и были обеспечены более высокие характеристики дальности и скорости хода. Тем не менее, возможности российских торпед существенно уступали современным модификациям основной американской универсальной торпеды Mk-48. Флоту, очевидно, требовались новые универсальные торпеды, отвечающие современным требованиям.

В 2003 году на Международном Военно-Морском Салоне была представлена новая торпеда УГСТ (Универсальная Глубоководная Самонаводящаяся Торпеда). Для ВМФ России эта торпеда получила название "Физик". По имеющимся данным, с 2008 года на заводе "Дагдизель" велось производство ограниченных партий этих торпед для проведения испытаний на новейших подводных лодках проектов 955 и 885. С 2015 года начато серийное производство данных торпед и оснащение ими новейших подводных лодок, которые до этого пришлось вооружить устаревшими торпедами. К примеру, подводная лодка "Северодвинск", вступившая в состав флота в 2014 году изначально было вооружена морально устаревшими торпедами УСЭТ-80. Как сообщается в открытых источниках, по мере увеличения количества произведённых новых торпед, ими будут вооружаться и более старые подводные лодки.

В 2016 году сообщалось, что на озере Иссык-Куль велись испытания новой торпеды "Футляр" и что она должна была быть принята на вооружение в 2017 году, после чего производство торпед "Физик" будет свёрнуто и вместо них флота начнёт получать уже другие, более совершенные торпеды. Однако 12 июля 2017 года газета "Известия" и ряд российских информационных агентств сообщили о том, что на вооружение ВМФ России принята новая торпеда "Физик-2". На данный момент совершенно неясно, принята ли на вооружение торпеда, которую называли "Футляр" или торпеда "Футляр" - принципиально новая торпеда. В пользу первой версии может свидетельствовать то, что как сообщалось в прошлом году, торпеда "Футляр" представляет собой дальнейшее развитие торпеды "Физик". Тоже самое говорится и о торпеде "Физик-2".

Торпеда "Физик" имеет дальность хода в 50 км при скорости 30 узлов и 40 километров при скорости в 50 узлов. Торпеда "Физик-2", как сообщается, имеет увеличенную до 60 узлов (около 110 кмч) максимальную скорость за счёт нового турбинного двигателя 19ДТ мощностью 800 кВт. Торпеда "Физик" имеет активно-пассивную систему самонаведения и систему телеуправления. Система самонаведения торпеды при стрельбе по надводным целям, обеспечивает обнаружение кильватерного следа вражеского корабля на расстоянии 2,5 километров и наведение на цель при помощи лоцирования кильватерного следа. По всей видимости, на торпеде установлена система лоцирования кильватерного следа нового поколения, маловосприимчивая к средствам гидроакустического противодействия. Для стрельбы по подводным лодкам система самонаведения имеет активные гидролокаторы, способные "захватить" подлодку противника на расстоянии до 1200 метров. Вероятно, новейшая торпеда "Физик-2" имеет ещё более совершенную систему самонаведения. Также представляется вполне вероятным, что торпеда получила шланговую катушку вместо буксируемой. Как сообщается, общие боевые возможности данной торпеды сопоставимы с возможностями последних модификаций американской торпеды Mk-48.

Таким образом, ситуацию с "торпедным кризисом" в ВМФ России удалось переломить и возможно в ближайшие годы удастся оснастить все российские подводные лодки новыми универсальными высокоэффективными торпедами, которые существенно расширят потенциал российского подводного флота.

Павел Румянцев

По ленд-лизу. В послевоенные годы разработчикам торпед в СССР удалось значительно повысить их боевые качества, в результате чего ТТХ торпед советского производства были значительно улучшены.

Торпеды Российского флота XIX века

Торпеда Александровского

В 1862 году российский изобретатель Иван Федорович Александровский спроектировал первую российскую подводную лодку с пневматическим двигателем. Первоначально лодка должна была вооружаться двумя связанными минами , которые должны были отпускаться, когда лодка проплывает под вражеским кораблем и, всплывая, охватывать его корпус. Подрыв мин планировалось производить с помощью электрического дистанционного взрывателя.
Значительная сложность и опасность такой атаки заставили Александровского разработать иной тип вооружения. Для этой цели он проектирует подводный самодвижущийся снаряд, по конструкции аналогичный подводной лодке, но меньших размеров и с автоматическим механизмом управления. Александровский называет свой снаряд «самодвижущимся торпедо», хотя позже в российском флоте общепринятым выражением стало «самодвижущая мина».

Торпеда Александровского 1875 года

Занятый постройкой подводной лодки, Александровский смог приступить к изготовлению своей торпеды только в 1873 году, когда торпеды Уайтхеда уже стала поступать на вооружение. Первые образцы торпед Александровского были испытаны в 1874 году на Восточном Кронштадтском рейде . Торпеды имели сигарообразный корпус, изготовленный из 3,2-мм листовой стали. 24-дюймовая модель имела диаметр 610 мм и длину 5,82 м, 22-дюймовая - 560 мм и 7,34 м соответственно. Вес обоих вариантов составлял около 1000 кг. Воздух для пневматического двигателя закачивался в резервуар объемом 0,2 м3 под давлением до 60 атмосфер. через редуктор воздух поступал в одноцилиндровый двигатель, напрямую связанный с хвостовым винтом . Глубина хода регулировалась с помощью водяного балласта , направление хода - вертикальными рулями .

На испытаниях под неполным давлением в трех пусках 24-дюймовая версия прошла расстояние в 760 м, выдерживая глубину около 1,8 м. Скорость на первых трехстах метрах составила 8 узлов , на конечных - 5 узлов. Дальнейшие испытания показали, что при высокой точности выдерживания глубины и направления хода. Торпеда была слишком тихоходная и не могла развить скорость более 8 узлов даже в 22-дюймовая варианте.
Второй образец торпеды Александровского был построен в 1876 году и имел более совершенный двухцилиндровый двигатель, а вместо балластной системы выдерживания глубины был применен гиростат, управляющий хвостовыми горизонтальными рулями. Но когда торпеда была готова к испытаниям, Морское министерство направило Александровского на завод Уайтхеда. Ознакомившись с характеристиками торпед из Фиуме, Александровский признал, что его торпеды значительно уступают австрийским и рекомендовал флоту закупить торпеды конкурентов.
В 1878 году торпеды Уайтхеда и Александровского были подвергнуты сравнительным испытаниям. Российская торпеда показала скорость 18 узлов, уступив всего 2 узла торпеде Уайтхеда. В заключении комиссии по испытаниям был сделан вывод, что обе торпеды имеют схожий принцип и боевые качества, однако к тому времени лицензия на производство торпед уже была приобретена и выпуск торпед Александровского был признан нецелесообразным.

Торпеды Российского флота начала ХХ века и Первой мировой войны

В 1871 году Россия добилась снятия запрета держать военно-морской флот в Черном море . Неизбежность войны с Турцией заставила Морское министерство форсировать перевооружение Российского флота, поэтому предложение Роберта Уайтхеда приобрести лицензию на производство торпед его конструкции оказалось как нельзя кстати. В ноябре 1875 года был подготовлен контракт на приобретение 100 торпед Уайтхеда, спроектированных специально для Российского флота, а также исключительно право на использование их конструкций. В Николаеве и Кронштадте были созданы специальные мастерские по производству торпед по лицензии Уайтхеда. Первые отечественные торпеды начали производиться осенью 1878 года, уже после начала русско-турецкой войны.

Минный катер Чесма

13 января 1878 года в 23:00 минный транспорт «Великий князь Константин» подошел к рейду Батума и от него отошли два из четырех минных катеров: «Чесма» и «Синоп». Каждый катер был вооружен пусковой трубой и плотиком для для пуска и транспортировки торпед Уайтхеда. Примерно в 02:00 ночи 14 января катера приблизились на расстояние 50-70 метров к турецкой канонерской лодке Intibah, охранявшей вход в бухту. Две пущенные торпеды попали практически в середину корпуса, корабль лег на борт и быстро затонул. «Чесма» и «Синоп» вернулись к русскому минному транспорту без потерь. Эта атака стала первым успешным применением торпед в мировом военном деле .

Несмотря на повторный заказ торпед в Фиуме, Морское министерство организовало производство торпед на котельном заводе Лесснера, Обуховском заводе и в уже существовавших мастерских в Николаеве и Кронштадте. К концу XIX века в России производилось до 200 торпед в год. Причем каждая партия изготовленных торпед в обязательном порядке проходила пристрелочные испытания, и лишь затем поступала на вооружение. Всего до 1917 года в Российском флоте находилось 31 модификация торпед.
Большинство моделей торпед являлись модификациями торпед Уайтхеда, небольшая часть торпед поставлялась заводами Шварцкопф, а в России конструкции торпед дорабатывались. Изобретатель А. И. Шпаковский, сотрудничавший с с Александровским, в 1878 году предложил использовать гироскоп для стабилизации курса торпеды, еще не зная, что аналогичным «секретным» прибором снабжались торпеды Уайтхеда. В 1899 году лейтенант русского флота И. И. Назаров предложил собственную конструкцию спиртового подогревателя. Лейтенант Данильченко разработал проект пороховой турбины для установки на торпеды, а механики Худзынский и Орловский впоследствии усовершенствовали и ее конструкцию, но в серийное производство турбина принята не была из за низкого технологического уровня производства.

Торпеда Уайтхеда

Российские миноносцы и миноноски с неподвижными торпедными аппаратами оборудовались прицелами Азарова, а более тяжелые корабли, оснащенные поворотными ТА - прицелами, разработанными заведующим минной частью Балтийском флоте А. Г. Нидермиллером. В 1912 году появились серийные торпедные аппараты «Эриксон и К°» с приборами управления торпедной стрельбой конструкции Михайлова. Благодаря этим приборам, которые использовались совместно с прицелами Герцика, прицельную стрельбу можно было вести с каждого аппарата. Таким образом впервые в мире русские миноносцы могли вести групповую прицельную стрельбу по одной цели, что делало их безоговорочными лидерами еще до Первой мировой войны .

В 1912 году для обозначения торпед стало применяться унифицированное обозначение, состоявшее из двух групп чисел: первая группа - округленный калибр торпеды в сантиметрах, вторая группа - две последние цифры года разработки. Например, тип 45-12 расшифровывался как торпеда калибра 450 мм 1912 года разработки.
Первая полностью российская торпеда образца 1917 года типа 53-17 не успела попасть в серийное производство и послужила основой для разработки советской торпеды 53-27.

Основные технические характеристики торпед российского флота до 1917 года

Торпеды ВМФ СССР

Парогазовые торпеды

Морские силы РККА РСФСР были вооружены торпедами, оставшимися от российского флота. Основную массу этих торпед составляли модели 45-12 и 45-15. Опыт Первой мировой войны показал, что дальнейшее развитие торпед требует увеличение их боевого заряда до 250 и более килограмм, поэтому наиболее перспективными считались торпеды калибра 533 мм. Разработка модели 53-17 была прекращена после закрытия завода Лесснера в 1918 году. Проектирование и испытание новых торпед в СССР было поручено «Особому техническому бюро по военным изобретениям специального назначения» - Остехбюро, организованному в 1921 году, во главе которого стоял изобретатель изобретатель Владимир Иванович Бекаури. В 1926 году в качестве промышленной базы Остехбюро был передан бывший завод Лесснера, получивший название завод «Двигатель».

На базе имевшихся разработок моделей 53-17 и 45-12 было начато проектирование торпеды 53-27 , вышедшей на испытания в 1927 году. Торпеда была универсальной по базированию, но имела большое колличество недостатков, в том числе - малую дальность автономного хода, из за чего на вооружение крупных надводных кораблей поступала в ограниченных количествах.

Торпеды 53-38 и 45-36

Несмотря на сложности при производстве, выпуск торпед к 1938 году было развернут на 4 заводах: «Двигатель» и имени Ворошилова в Ленинграде, «Красный Прогресс» в Запорожской области и заводе № 182 в Махачкале. Испытания торпед проводились на трех станциях в Ленинграде, Крыму и Двигательстрое (в настоящее время - Каспийск). Торпеда выпускалась в модификациях 53-27л для подводных лодок и 53-27к для торпедных катеров.

В 1932 году СССР закупил в Италии несколько типов торпед, в том числе - 21-дюймовую модель производства завода в Фиуме, которая получила обозначение 53F. На базе торпеды 53-27 с использованием отдельных узлов от 53F была создана модель 53-36, но ее конструкция оказалась неудачной и за 2 года производства было построено всего 100 экземпляров этой торпеды. Более удачной стала модель 53-38 , которая по сути была адаптированной копией 53F. 53-38 и ее последующие модификации, 53-38У и 53-39 , стали самыми быстрыми торпедами Второй мировой войны, наряду с японской Type 95 Model 1 и итальянской W270/533,4 x 7,2 Veloce. Производство 533-мм торпед было развернуто на заводах «Двигатель» и № 182 («Дагдизель»).
На базе итальянской торпеды W200/450 x 5,75 (обозначение в СССР 45F) в Мино-торпедном институте (НИМТИ) была создана торпеда 45-36Н, предназначенная для эсминцев типа Новик и как подкалиберная для 533-мм торпедных аппаратов подводных лодок. Выпуск модели 45-36Н был налажен на заводе «Красный прогресс».
В 1937 году Остехбюро было ликвидировано, взамен его в Наркомате Оборонной промышленности создано 17-е главное управление, в которое вошли ЦКБ-36 и ЦКБ-39, а в Наркомате ВМФ - Минно-Торпедное Управление (МТУ).
В ЦКБ-39 были проведены работы по увеличению заряда ВВ 450-мм и 533-мм торпед, в результате чего на вооружение стали поступать удлиненные модели 45-36НУ и 53-38У. Помимо увеличения поражающей способности, торпеды 45-36НУ оснащались неконтактным магнитным взрывателем пассивного действия, создание которого началось в 1927 году в Остехбюро. Особенностью модели 53-38У было использование рулевого механизма с гироскопом, позволявшим плавно изменять курс послен запуска, что позволяло вести стрельбу «веером».

Силовая установка торпеды СССР

В 1939 году на базе модели 53-38 в ЦКБ-39 было начато проектирование торпеды CAT (самонаправляющаяся акустическая торпеда). несмотря на все усилия, акустическая система наведения на шумной парогазовой торпеде не работала. Работы были прекращены, но возобновились после доставки в институт трофейных образцов самонаводящихся торпед Т-V. Немецкие торпеды были подняты с затопленной под Выборгом лодки U-250. Несмотря на механизм самоуничтожения, которым немцы оснащали свои торпеды, их удалось извлечь с лодки и доставить в ЦКБ-39. В институте составили подробное описание немецких торпед, которое было передано советским конструкторам, а также британскому Адмиралтейству.

Поступившая на вооружение уже в ходе войны торпеда 53-39 была модификацией модели 53-38У, но выпускалась в крайне ограниченном количестве. Проблемы с производством были связаны с эвакуацией заводов «Красный Прогресс» в Махачкалу, а затем. вместе с «Дагдизелем» в Алма-Ату. Позже была разработана маневрирующая торпеда 53-39 ПМ, предназначенная для уничтожения кораблей, идущих противоторпедным зигзагом.
Последними образцами парогазовых торпед в СССР стали послевоенные модели 53-51 и 53-56В, оснащенные приборами маневрирования и активным неконтактным магнитным взрывателем.
В 1939 году были построены первые образцы торпедных двигателей на базе спаренных шестиступенчатых турбин противоположного вращения. До начала Великой Отечественной эти двигатели проходили испытания под Ленинградом на Копанском озере.

Экспериментальные, паротурбинные и электрические торпеды

В 1936 году была предпринята попытка создать торпеду с турбинным двигателем, которая по расчетам должна была развить скорость в 90 узлов, что вдвое превышало скорость самых быстрых торпед того времени. В качестве топлива планировалсь использовать азотную кислоту (окислитель) и скипидар. Разработка получила условное наименование АСТ - азотно-скипидарная торпеда. На испытаниях АСТ, оснащенная стандартным поршневым двигателем торпеды 53-38, развила скорость 45 узлов при дальности хода до 12 км. Но создание турбины, которая могла быть размещена в корпусе торпеды, оказалось невозможным, а азотная кислота была слишком агрессивной для использования в серийных торпедах.
Для создания бесследной торпеды велись работы по исследованию возможности применения термита в обычных парогазовых двигателях, но до 1941 достичь обнадеживающих результатов не удалось.
Для повышения мощности двигателей в НИМТИ велись разработки по оснащению обычных торпедных двигателей системой обогащения кислородом. Довести эти работы до создания реальных опытных образцов не удалось из за крайней нестабильности и взрывоопасности кислородо-воздушной смеси.
Значительно более эффективными оказались работы по созданию торпед на электрической тяге. Первый образец электромотора для торпед был создан в Остехбюро в 1929 году. Но промышленность не могла в то время предоставить для торпед аккумуляторных батарей достаточной мощности, поэтому создание действующих образцов электроторпед началось только в 1932 году. Но даже эти образцы не устраивали моряков из за повышенной шумности редуктора и низкого КПД электромотора производства завода «Электросила».

В 1936 году благодаря усилиям Центральной аккумуляторной лаборатории в распоряжение НИМТИ была предоставлена мощная и компакнтная свинцово-кислотная батарея В-1. Завод «Электросила» был готов к производству биротативного двигателя ДП-4. Испытания первой советской электроторпеды проводились в 1938 году в Двигательстрое. По результатам этих испытаний были созданы модернизированная батарея В-6-П и электродвигатель повышенной мощности ПМ5-2. В ЦКБ-39 на базе этой силовой и корпуса паровоздушной торпеды 53-38 была разработана торпеда ЭТ-80 . Электроторпеды были встречены моряками без большого энтузиазма, поэтому испытания ЭТ-80 затянулись и на вооружение она стала поступать только в 1942 году, да и благодаря появлению информации о трофейных немецких торпедах G7e. первоначально производство ЭТ-80 было развернуто на базе эвакуированного в Уральск завода «Двигатель» и им. К. Е. Ворошилова.

Реактивная торпеда РАТ-52

В послевоенные годы на базе трофейных G7e и отечественных ЭТ-80 было налажено производство торпед ЭТ-46. Модификации ЭТ-80 и ЭТ-46 с акустической системой самонаведения получили обозначение САЭТ (самонаводящаяся акустическая электроторпеда) и САЭТ-2 соответственно. На вооружение советская самонаводящаяся акустическая электроторпеда поступила в 1950 году под индексом САЭТ-50 , а в 1955 году ей на смену пришла модель САЭТ-50М.

Еще в 1894 году Н. И. Тихомиров проводил эксперименты с самодвижущимися реактивными торпедами. Созданная в 1921 году ГДЛ (газодинамическая лаборатория) продолжила работы над созданием реактивных аппаратов, но позже стала заниматься только ракетной техникой. После появления реактивных снарядов М-8 и М-13 (РС-82 и РС-132) НИИ-3 получил задание на разработку реактивной торпеды, но реально работы начались только в конце войны, в ЦНИИ «Гидроприбор». Была создана модель РТ-45, а затем ее модифицированная версия РТ-45-2 для вооружения торпедных катеров. РТ-45-2 планировалось оснащать контактным взрывателем, а ее скорость в 75 узлов практически не оставляла шансов уклониться от ее атаки. После окончания войны работы над ракетными торпедами были продолжены в рамках проектов «Щука», «Тема-У», «Луч» и других.

Авиационные торпеды

В 1916 году товарищество Щетинина и Григоровича начало постройку первого в мире специального гидросамолета-торпедоносца ГАСН. После нескольких испытательных полетов морское ведомство было готов разместить заказ на построку 10 самолетов ГАСН, но начавшаяся революция разрушила эти планы.
В 1921 году году в Кронштадте проводились испытания циркулирующих авиационных торпед на базе модели Whitehead обр. 1910 г. тип «Л». С образованием Остехбюро работы над созданием таких торпед были продолжены, они были рассчитаны на сброс с самолета на высоте 2000-3000 м. Торпеды комплектовались парашютами, которые сбрасывались после приводнения и торпеда начинала движение по кругу. Помимо торпед для высотного сброса, велись испытания торпед ВВС-12 (на базе 45-12) и ВВС-1 (на базе 45-15), которые сбрасывались с высоты 10-20 метров с самолета ЮГ-1. В 1932 году в производство была передана первая авиационная советская торпеда TAB-15 (торпеда авиационная высотного торпедометания), предназначенная для сброса с самолетов МДР-4 (МТБ-1), АНТ-44 (МТБ-2), Р-5Т и поплавковом варианте ТБ-1 (МР-6). Торпеда TAB-15 (бывшая ВВС-15) стала первой в мире торпедой, предназначенной для высотного бомбометания и могла выполнять циркуляцию по кругу либо разворачивающейся спирали.

Торпедоносец Р-5Т

В серийное производство ВВС-12 пошла под обозначением ТАН-12 (торпеда авиационная низкого торпедометания), которая предназначалась для сброса с высоты 10-20 м при скорости не более 160 км/ч. В отличии от высотной, торпеда ТАН-12 не оснащалась прибором для выполнения маневрирования после сброса. Отличительной особенностью торпед ТАН-12 стала система подвеса под заранее установленным углом, что обеспечивало оптимальное вхождение торпеды в воду без применение громоздкого воздушного стабилизатора.

Помимо 450-мм торпед, велись работы над созданием авиаторпед калибра 533 мм, которые получили обозначение ТАН-27 и ТАВ-27 для высотного и обычного сброса соответственно. Торпеда СУ имела калибр 610 мм и оснащалась светосигнальным устройством контроля траектории, а самой мощной авиаторпедой стала торпеда СУ калибра 685 мм с зарядом 500 кг, которая предназначалась для уничтожения линкоров.
В 1930-х годах авиаторпеды продолжали совершенствоваться. Модели ТАН-12А и ТАН-15А отличались облегченной парашютной системой и поступали на вооружение под обозначениями 45-15АВО и 45-12АН.

Ил-4Т с торпедой 45-36АВА.

На базе торпед корабельного базирования 45-36 в НИМТИ ВМФ были спроектированы авиационные торпеды 45-36АВА (авиационная высотная Алферова) и 45-36АН (авиационная низкого торпедометания). Обе торпеды стали поступать на вооружение в 1938-1939 годах. если с высотной торпедой проблем не возникло, то внедрение 45-36АН встретило ряд проблем, связанных со сбросом. Базовый самолет-торпедоносец ДБ-3Т оснащался громоздким и несовершенным подвесным устройством Т-18. К 1941 году лишь несколько экипажей освоило сброс торпед с помощью Т-18. В 1941 году боевой летчик, майор Сагайдук разработал воздушный стабилизатор, который состоял из четырех досок, усиленных металлическими полосками. В 1942 году был принят на вооружение разработанный НИМТИ ВМФ воздушный стабилизатор АН-42, который представлял из себя трубу длиной 1,6 м, которая сбрасывалась после приводнения торпеды. Благодаря применению стабилизаторов, удалось увеличить высоту сброса до 55 м, а скорость - до 300 км/ч. В годы войны модель 45-36АН стала основной авиационной торпедой СССР, которой оснащались торпедоносцы Т-1 (АНТ-41), АНТ-44, ДБ-3Т, Ил-2Т, Ил-4Т, Р-5Т и Ту-2Т.

Подвеска реактивной торпеды РАТ-52 на Ил-28Т

В 1945 году был разработан легкий и эффективный кольцевой стабилизатор СН-45, который позволял производить сброс торпед под любыми углами с высоты до 100 м при скорости до 400 км/ч. Доработанные торпеды со стабилизатором СН-45 получили обозначение 45-36АМ. а в 1948 году им на смену пришла модель 45-36АНУ, оснащенная прибором Орби. Благодаря этому устройству торпеда могла маневрировать и выходить на цель под заранее заданным углом, который определялся авиационным прицелом и вводился в торпеду.

В 1949 году велись разработки экспериментальных реактивных торпед Щука-А и Щука-Б, оснащенных ЖРД . Торпеды могли сбрасываться с высоты до 5000 м, после чего включался ЖРД и торпеда могла выполнять полет на расстояние до 40 км, а затем погружаться в воду. Фактически эти торпеды являлись симбиозом ракеты и торпеды. Щука-А оснащалась системой наведения по радиоканалу, Щука-Б - радиолокационным самонаведением. В 1952 году на базе этих экспериментальных разработок была создана и принята на вооружение реактивная авиационная торпеда РАТ-52.
Последними парогазоваыми авиационными торпедами СССР стали 45-54ВТ (высотная парашютная) и 45-56НТ для низковысотного сброса.

Основные технические характеристики торпед СССР

Осенью 1984 года в Баренцевом море произошли события, которые могли привести к началу мировой войны.

В район боевой подготовки советского северного флота неожиданно на полном ходу ворвался американский ракетный крейсер. Это произошло во время торпедометания звеном вертолетов Ми-14. Американцы спустили на воду скоростную моторную лодку, а в воздух подняли вертолет для прикрытия. Авиаторы североморцы поняли, что их целью является захват новейший советской торпеды .

Почти 40 минут длилась дуэль над морем. Маневрами и потоками воздуха от винтов советские летчики не давали назойливым янки приблизиться к секретному изделию, пока советский благополучно не поднял его на борт. Подоспевшие к этому времени корабли охранения вытеснили американский за пределы полигона.

Торпеды всегда считались наиболее эффективным оружием отечественного флота. Не случайно за их секретами регулярно охотятся спецслужбы НАТО. Россия продолжает оставаться мировым лидером по количеству ноу-хау в применении при создании торпед.

Современная торпеда грозное оружие современных кораблей и подводных лодок. Она позволяет быстро и точно наносить удары по противнику в море. По определению торпеда это автономный самодвижущийся и управляемый подводный снаряд, в котором запечатано около 500 кг взрывчатого вещества или ядерная боевая часть. Секреты разработки торпедного оружия являются наиболее охраняемыми, и число государств, владеющих этими технологиями даже меньше количества членов «ядерного клуба».

В период Корейской войны в 1952 году американцы планировали сбросить две атомные бомбы каждая весом 40 тонн. В это время на стороне корейских войск действовал советский истребительный авиаполк. Советский Союз также имел ядерное оружие, и локальный конфликт в любую минуту могут перерасти в настоящую ядерную катастрофу. Сведения о намерениях американцев применить атомные бомбы стали достоянием советской разведки. В ответ Иосиф Сталин приказал ускорить создание более мощного термоядерного оружия. Уже в сентябре того же года министр судостроительной промышленности Вячеслав Малышев представил на утверждение Сталину уникальный проект.

Вячеслав Малышев предложил создать для огромную ядерную торпеду Т-15. Этот 24-метровый снаряд калибра 1550 миллиметров должен был иметь вес 40 тонн, из которых только 4 тонн приходилось на боеголовку. Сталин одобрил создание торпеды , энергию для которой производили электрические аккумуляторы.

Это оружие могло бы уничтожать крупные военно-морские базы США. Из-за повышенной секретности строители и атомщики консультации с представителями флота не вели, поэтому никто не подумал как обслуживать такого монстра и стрелять, кроме того ВМС США имели всего лишь две базы доступные для советских торпед, поэтому от супергиганта Т-15 отказались.

В замена моряки предложили создать атомную торпеду обычного калибра, которая могла бы применяться на всех . Интересно, что калибр 533 миллиметра общепринятый и научно обоснован, так как калибр и длина это фактически потенциальная энергия торпеды. Скрытно наносить удары по вероятному противнику можно было только на большие дистанции, поэтому конструкторы и военные моряки отдали приоритет тепловым торпедам.

Десятого октября 1957 года в районе Новой Земли были проведены первые подводные ядерные испытания торпеды калибром 533 миллиметра. Новой торпедой стреляла подводная лодка С-144. С дистанции 10 километров подлодка выполнила одно торпедный залп. Вскоре на глубине 35 метров последовал мощный атомный взрыв, его поражающие свойства фиксировали сотни датчиков, размещенных на , находившихся в районе испытаний. Интересно, что экипажи во время этого опаснейшего элемента заменили животными.

По итогам этих испытаний, военный флот получил на вооружение первую атомную торпеду 5358 . Они относились к классу тепловых, так как их двигатели работали на парах газовой смеси.

Атомная эпопея это только одна страница из истории российского торпедостроения. Более 150 лет назад идея создать первую самодвижущую морскую мину или торпеду выдвинул наш соотечественник Иван Александровский. Вскоре под командованием впервые в мире была применена торпеда в бою с турками в январе 1878 года. А в начале Великой Отечественной войны советские конструкторы создали самую высокоскоростную торпеду в мире 5339, что значит 53 сантиметра и 1939 года. Однако подлинный рассвет отечественные школы торпедостроения произошел в 60-е годы прошлого века. Его центром стал ЦНИ 400, в последствие переименованный в «Гидроприбор». За прошедший период институт передал советскому флоту 35 различных образцов торпед .

Помимо подлодок торпедами вооружались морская авиация и все классы надводных кораблей, бурно развивающегося флота СССР: крейсеры, эсминцы и сторожевые корабли. Также продолжали строиться уникальные носители этого оружия торпедные катера.

В тоже время состав блока НАТО постоянно пополнялся кораблями с более высокими характеристиками. Так в сентябре 1960 года на воду был спущен первый в мире атомный «Энтерпрайз» водоизмещением 89000 тонн, с 104 единицами ядерных боеприпасов на борту. Для борьбы с авианосными ударными группами имеющих сильную противолодочную оборону, дальности существовавшего оружие было уже недостаточно.

Не замеченными к авианосцам могли подойти только подводные лодки, но вести прицельную стрельбу по прикрытого кораблями охранения было крайне сложно. Кроме того за годы Второй мировой войны американский флот научился противодействовать системе самонаведения торпеды. Чтобы решить эту проблему советские ученые впервые в мире создали новое торпедное устройство, которое обнаруживала кильватерную струю корабля и обеспечивала его дальнейшее поражение. Однако тепловые торпеды имели существенный недостаток их характеристики резко падали на большой глубине, при этом их поршневые двигатели и турбины издавали сильные шумы, что демаскировало атаковавшие корабли.

В виду этого конструкторам пришлось решать новые задачи. Так появились авиационная торпеда, которая размещались под корпусом крылатой ракеты. В результате время поражения субмарин сократилась в несколько раз. Первый такой комплекс получил название «Метель». Он был предназначен для стрельбы с подводными лодками со сторожевых кораблей. Позже комплекс научился поражать и надводные цели. Ракето-торпедами были вооружены и субмарины.

В 70-х годах ВМС США переквалифицировали свои авианосцы из ударных, в многоцелевые. Для этого был заменен состав базирующихся на них самолетов в пользу противолодочных. Теперь они могли не только наносить воздушные удары по территории СССР, но и активно противодействовать развёртыванию в океане советских подводных лодок. Для прорыва обороны и уничтожения многоцелевых авианосных ударных групп, советские подлодки стали вооружаться крылатыми ракетами, стартовавшими из торпедных аппаратов и летевших на сотни километров. Но даже это дальнобойное оружие не могло потопить плавучий аэродром. Требовались более мощные заряды, поэтому специально для атомоходов типа « » конструкторы «Гидроприбор» создали торпеду увеличенного калибра 650 миллиметров, которая несет более 700 килограммов взрывчатки.

Этот образец используется в так называемой мертвой зоне своих противокорабельных ракет. Он наводится на цель либо самостоятельно, либо получает информацию от внешних источников целеуказания. При этом торпеда может подойти к противнику одновременно с другими средствами поражения. Защититься от такого массированного удара практически невозможно. За это она получила прозвище «убийца авианосцев».

В повседневных делах и заботах советские люди не задумывались об опасностях связанных с противостоянием сверхдержав. А ведь на каждого из них было нацелено в эквиваленте около 100 тонн боевых средств США. Основная масса этого оружия была вынесена в мировой океан и размещена на подводных носителях. Главным оружием советского флота против были противолодочные торпеды . Традиционно для них использовались электрические двигатели, мощность которых не зависела от глубины хода. Такими торпедами вооружались не только подводные лодки, но и надводные корабли. Самыми мощными из них были . Долгое время наиболее распространенные противолодочные торпеды для субмарин были СЭТ-65, но в 1971 году конструкторы впервые применили телеуправление, которое осуществлялось под водой по проводам. Это резко увеличило точность стрельбы подлодок. А вскоре была создана универсальная электроторпеда УСЭТ-80, которая эффективно могла уничтожать не только

Министерство образования РФ

ТОРПЕДНОЕ ОРУЖИЕ

Методические указания

для самостоятельной работы

по дисциплине

«БОЕВЫЕ СРЕДСТВА ФЛОТА И ИХ БОЕВОЕ ПРИМЕНЕНИЕ»

Торпедное оружие: методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / Сост.: , ; СПб.: Изд-во СПбГЭТУ “ЛЭТИ”, 20с.

Предназначены для студентов всех профилей подготовки.

Утверждено

редакционно-издательским советом университета

в качестве методических указаний

Из истории развития и боевого применения

торпедного оружия

Появление в начале XIX в. бронированных кораблей с тепловыми двигателями обострило необходимость создания оружия, поражающего наиболее уязвимую подводную часть корабля. Таким оружием стала появившаяся в 40-х годах морская мина. Однако она обладала существенным недостатком: была позиционной (пассивной).

Первая в мире самодвижущаяся мина была создана в 1865 г. русским изобретателем.

В 1866 г. проект самодвижущегося подводного снаряда разработал работавший в Австрии англичанин Р. Уайтхед. Он же и предложил назвать снаряд по имени морского ската – «торпедо». Не сумев наладить собственное производство, российское Морское ведомство в 70-х годах закупило партию торпед Уайтхеда. Они проходили дистанцию 800 м со скоростью 17 узлов и несли заряд пироксилина массой 36 кг.

Первая в мире успешная торпедная атака была произведена командиром русского военного парохода лейтенантом (впоследствии – вице-адмиралом) 26 января 1878 г. Ночью, при сильном снегопаде на Батумском рейде, два спущенных с парохода катера подошли на 50 м к турецкому кораблю и одновременно выпустили по торпеде. Корабль быстро затонул почти со всей командой.

Принципиально новое торпедное оружие изменило взгляды на характер вооружённой борьбы на море – от генеральных сражений флоты переходили к ведению систематических боевых действий.

Торпеды 70-80-х годов XIX в. имели существенный недостаток: не имея приборов управления в горизонтальной плоскости, они сильно отклонялись от заданного курса и стрельба на дистанции более 600 м была малоэффективной. В 1896 г. лейтенант австрийского флота Л. Обри предложил первый образец гироскопического прибора курса с пружинным подзаводом, который удерживал торпеду на курсе в течение 3 – 4 мин. На повестку дня стал вопрос увеличения дальности хода.

В 1899 г. лейтенант русского флота изобрёл подогревательный аппарат, в котором сжигался керосин. Сжатый воздух перед подачей его в цилиндры рабочей машины нагревался и совершал уже большую работу. Внедрение подогрева увеличило дальность хода торпед до 4000 м на скоростях до 30 узлов.

В первую мировую войну 49% от общего числа потопленных крупных кораблей пришлось на долю торпедного оружия.

В 1915 г. торпеда впервые была использована с самолёта.

Вторая мировая война ускорила испытания и принятие на вооружение торпед с неконтактными взрывателями (НВ), системами самонаведения (ССН) и электрическими энергоустановками.

В последующие годы, несмотря на оснащение флотов новейшим ракетно-ядерным оружием , торпеды не утратили своего значения. Являясь самым эффективным противолодочным средством, они состоят на вооружении всех классов надводных кораблей (НК), подводных лодок (ПЛ) и морской авиации, а также стали основным элементом современных противолодочных ракет (ПЛУР) и неотъемлемой частью многих образцов современных морских мин. Современная торпеда – это сложный единый комплекс систем движения, управления движением, самонаведения и неконтактного подрыва заряда, созданных на основе современных достижений науки и техники.

1.ОБЩИЕ СВЕДЕНИЯ О ТОРПЕДНОМ ОРУЖИИ

1.1. Назначение, состав и размещение комплексов

торпедного оружия на корабле

Торпедное оружие (ТО) предназначено:

Для поражения подводных лодок (ПЛ), надводных кораблей (НК)

Разрушения гидротехнических и портовых сооружений.

Для этих целей применяются торпеды, состоящие на вооружении надводных кораблей, подводных лодок и самолетов (вертолетов) морской авиации. Кроме того, они используются в качестве боевых частей противолодочных ракет и мин-торпед.

Торпедное оружие представляет собой комплекс, включающий в себя:

Боекомплект торпед одного или нескольких типов;

Пусковые установки торпед – торпедные аппараты(ТА);

Приборы управления торпедной стрельбой (ПУТС);

Комплекс дополняется оборудованием, предназначенным для погрузки и выгрузки торпед, а также устройствами контроля за их состоянием в период хранения на носителе.

Число торпед в боекомплекте, в зависимости от типа носителя, составляет:

На НК – от 4 до 10;

На ПЛ – от 14-16 до 22-24.

На отечественных НК весь запас торпед размещается в торпедных аппаратах, установленных побортно на больших кораблях, и в диаметральной плоскости на средних и малых кораблях. Эти ТА являются поворотными, что обеспечивает их наведение в горизонтальной плоскости. На торпедных катерах ТА устанавливаются побортно неподвижно и являются ненаводящимися (стационарными).

На атомных ПЛ торпеды хранятся в первом (торпедном) отсеке в трубах ТА (4-8), а запасные – на стеллажах.

На большинстве дизель-электрических ПЛ торпедными отсеками являются первый и концевой.

ПУТС – комплекс приборов и линий связи – размещается на главном командном пункте корабля (ГКП), командном пункте командира минно-торпедной боевой части (БЧ-3) и на торпедных аппаратах.

1.2. Классификация торпед

Торпеды могут быть классифицированы по целому ряду признаков.

1. По предназначению:

Против ПЛ – противолодочные;

НК – противокорабельные;

НК и ПЛ – универсальные.

2. По носителям:

Для ПЛ – лодочные;

НК – корабельные;

ПЛ и НК – унифицированные;

Самолетов (вертолетов) – авиационные;

Противолодочных ракет;

Мин - торпед.

3. По типу энергосиловой установки (ЭСУ):

Парогазовые (тепловые);

Электрические;

Реактивные.

4. По способам управления:

С автономным управлением (АУ);

Самонаводящиеся (СН+АУ);

Телеуправляемые (ТУ + АУ);

С комбинированным управлением (АУ+СН+ТУ).

5. По типу взрывателя:

С контактным взрывателем (КВ);

С неконтактным взрывателем (НВ);

С комбинированным взрывателем (КВ+НВ).

6. По калибру:

400 мм; 533 мм; 650 мм.

Торпеды калибра 400 мм называют малогабаритными, 650 мм – тяжелыми. Большинство иностранных малогабаритных торпед имеют калибр 324 мм.

7. По режимам хода:

Однорежимные;

Двухрежимные.

Режимом в торпеде называют ее скорость и соответствующую этой скорости максимальную дальность хода. У двухрежимной торпеды, в зависимости от типа цели и тактической ситуации, режимы могут переключаться по ходу движения.

1.3. Основные части торпед



Любая торпеда конструктивно состоит из четырех частей (рис 1.1). Головная часть – боевое зарядное отделение (БЗО).Здесь размещаются: заряд взрывчатого вещества (ВВ), запальная принадлежность, контактный и неконтактный взрыватель. К переднему срезу БЗО крепится головка аппаратуры самонаведения.

В качестве ВВ в торпедах используются смесевые бризантные вещества с тротиловым эквивалентом 1,6-1,8. Масса ВВ, в зависимости от калибра торпеды, составляет 30-80 кг, 240-320 кг и до 600 кг соответственно.

Среднюю часть электрической торпеды называют аккумуляторным отделением, которое, в свою очередь, разделяется на батарейный и приборные отсеки. Здесь размещаются: источники энергии – батарея аккумуляторов, элементы пускорегулирующей аппаратуры, баллон с воздухом высокого давления и электродвигатель.

В парогазовой торпеде аналогичная составная часть носит название отделения энергокомпонентов и пускорегулирующей аппаратуры. В ней размещаются емкости с горючим, окислителем, пресной водой и тепловая машина – двигатель.

Третья составная часть торпеды любого типа называется кормовым отделением. Оно имеет конусообразную форму и содержит приборы управления движением, источники и преобразователи электроэнергии, а также основные элементы пневмогидравлической схемы.

К заднему срезу кормового отделения крепится четвертый составной элемент торпеды – хвостовая часть, заканчивающаяся движителями: гребными винтами или реактивным соплом.

На хвостовой части размещаются вертикальные и горизонтальные стабилизаторы, а на стабилизаторах – органы управления движением торпеды – рули.

1.4. Назначение, классификация, основы устройства

и принципы действия торпедных аппаратов

Торпедные аппараты (ТА) являются пусковыми установками и предназначены:

Для хранения торпед на носителе;

Введения в приборы управления движением торпеды установочных

данных (данных стрельбы);

Придания торпеде направления первоначального движения

(в поворотных ТА подводных кораблей);

Производства выстрела торпеды;

Торпедные аппараты ПЛ кроме этого могут быть использованы в качестве пусковых установок противолодочных ракет, а также для хранения и постановки морских мин.

ТА классифицируются по ряду признаков:

1) по месту установки:

2) по степени подвижности:

Поворотные (только на НК),

Неповоротные;

3) по количеству труб:

Однотрубные,

Многотрубные (только на НК);

4) по калибру:

Малого (400 мм, 324 мм),

Среднего (533 мм),

Крупного (650 мм);

5) по способу выстреливания

Пневматические,

Гидравлические (на современных ПЛ),

Пороховые (на малых НК).



Устройство ТА надводного корабля показано на рис 1.2. Внутри трубы ТА по всей ее длине располагаются четыре направляющие дорожки.

Внутри трубы ТА (рис. 1.3) по всей ее длине располагаются четыре направляющие дорожки.

Расстояние между противоположными дорожками соответствует калибру торпеды. В передней части трубы располагаются два обтюрирующих кольца, внутренний диаметр которых также равен калибру торпеды. Кольца препятствуют прорыву вперед рабочего тела (воздуха, воды, газа), подаваемого в заднюю часть трубы для выталкивания торпеды из ТА.

У всех ТА каждая труба имеет независимое устройство для производства выстрела. Вместе с тем, предусмотрена возможность залповой стрельбы из нескольких аппаратов с интервалом 0,5 – 1 с. Выстрел может производиться дистанционно с ГКП корабля или непосредственно с ТА, вручную.

Выстреливание торпеды производится путем подачи в кормовую часть ТА избыточного давления, обеспечивающего скорость выхода торпеды ~ 12 м/с.

ТА подводной лодки – стационарный, однотрубный. Число ТА в торпедном отсеке ПЛ – шесть или четыре. Каждый аппарат имеет прочные заднюю и переднюю крышки, заблокированные друг с дружкой. Это не дает возможности открыть заднюю крышку при открытой передней и наоборот. Подготовка аппарата к выстрелу включает заполнение его водой, выравнивание давления с забортным и открывание передней крышки.

У первых ТА ПЛ воздух, выталкивающий торпеду, выходил из трубы и всплывал на поверхность, образуя большой воздушный пузырь, демаскирующий подводную лодку. В настоящее время все ПЛ оснащаются системой беспузырной торпедной стрельбы (БТС). Принцип действия этой системы состоит в том, что после прохождения торпедой 2/3 длины ТА в его передней части автоматически открывается клапан, через который отработавший воздух выходит в трюм торпедного отсека.

На современных ПЛ для уменьшения шумности выстрела и обеспечения возможности стрельбы на больших глубинах устанавливаются гидравлические системы стрельбы. В качестве примера такая система приведена на рис. 1.4.

Последовательность операций при работе системы следующая:

Открывание автоматического забортного клапана (АЗК);

Выравнивание давления внутри ТА с забортным;

Закрывание АЗК;

Открывание передней крышки ТА;

Открывание воздушного клапана (ВК);

Движение поршней;

Перемещение воды в ТА;

Выстреливание торпеды;

Закрывание передней крышки;

Осушение ТА;

Открывание задней крышки ТА;



- загрузка стеллажной торпеды;

Закрывание задней крышки.

1.5. Понятие о приборах управления торпедной стрельбой

ПУТС предназначены для выработки данных, необходимых для прицельной стрельбы. Так как цель движется, возникает потребность решения задачи встречи торпеды с целью, т. е. нахождения той упреждённой точки, где эта встреча должна произойти.

Для решения поставленной задачи (рис. 1.5) необходимо:

1) обнаружить цель;

2) определить её местоположение относительно атакующего корабля, т. е. установить координаты цели – дистанцию Д0 и курсовой угол на цель КУ0 ;

3) определить параметры движения цели (ПДЦ) – курс Kц и скорость V ц;

4) рассчитать угол упреждения j, на который необходимо направить торпеду, т. е. рассчитать так называемый торпедный треугольник (на рис.1.5 выделен утолщёнными линиями). При этом допускается, что курс и скорость цели постоянны;

5) ввести необходимую информацию через ТА в торпеду.


обнаружения целей и определения их координат. Надводные цели обнаруживаются радиолокационными станциями (РЛС), подводные – гидроакустическими станциями (ГАС);

2) определения параметров движения цели. В их качестве используются ЭВМ или иные счетно-решающие приборы (СРП);

3) расчёта торпедного треугольника, также ЭВМ или иные СРП;

4) передачи и ввода информации в торпеды и контроля введённых в них данных. Таковыми могут быть линии синхронной связи и следящие устройства.

На рис.1.6 приведен вариант ПУТС, предусматривающий использование в качестве основного устройства обработки информации электронной системы, являющейся одной из схем общекорабельной боевой информационной управляющей системы (БИУС), и, как резервной – электромеханической. Такая схема применяется на современных под


ПГЭСУ торпед являются разновидностью тепловой машины (рис. 2.1). Источником энергии в тепловых ЭСУ является топливо, представляющее собою совокупность горючего и окислителя.

Используемые в современных торпедах виды топлива могут быть:

Многокомпонентными (горючее – окислитель – вода) (рис.2.2);

Унитарными (горючее смешано с окислителем – вода);

Твёрдые пороховые;



- твёрдые гидрореагирующие.

Тепловая энергия топлива образуется в результате химической реакции окисления или разложения веществ, входящих в его состав.

Температура сгорания топлива составляет 3000…4000°C. При этом возникает возможность размягчения материалов, из которых изготовлены отдельные узлы ЭСУ. Поэтому вместе с топливом в камеру сгорания подают воду, что снижает температуру продуктов сгорания до 600…800°C. Кроме того, впрыскивание пресной воды увеличивает объём парогазовой смеси, что существенно повышает мощность ЭСУ.

В первых торпедах использовалось топливо, включавшее в себя керосин и сжатый воздух в качестве окислителя. Такой окислитель оказался малоэффективным из-за низкого содержания кислорода. Составная часть воздуха – азот , не растворимая в воде, выбрасывалась за борт и являлась причиной демаскирующего торпеду следа. В настоящее время в качестве окислителей используют чистый сжатый кислород или маловодную перекись водорода . При этом продуктов сгорания, не растворимых в воде, почти не образуется и след практически не заметен.

Применение жидких унитарных топлив позволило упростить топливную систему ЭСУ и улучшить условия эксплуатации торпед.

Твёрдые топлива, являющиеся унитарными, могут быть мономолекулярными или смесевыми. Чаще используются последние. Они состоят из органического горючего, твёрдого окислителя и различных добавок. Количество выделяемого при этом тепла можно регулировать количеством подаваемой воды. Применение таких видов топлива исключает необходимость нести на борту торпеды запас окислителя. Это снижает массу торпеды, что значительно повышает скорость и дальность её

Двигатель парогазовой торпеды, в котором тепловая энергия преобразуется в механическую работу вращения гребных винтов, является одним из её главных агрегатов. Он определяет основные тактико-технические данные торпеды – скорость, дальность, следность, шумность.

Торпедные двигатели имеют ряд особенностей, которые отражаются на их конструкции:

Кратковременность работы;

Минимальное время выхода на режим и строгое его постоянство;

Работа в водной среде с высоким противодавлением выхлопу;

Минимальные масса и габариты при большой мощности;

Минимальный расход топлива.

Торпедные двигатели подразделяются на поршневые и турбинные. В настоящее время наибольшее распространение получили последние (рис. 2.3).

Энергокомпоненты подаются в парогазогенератор, где поджигаются зажигательным патроном. Образующаяся парогазовая смесь под дав



лением поступает на лопатки турбины, где, расширяясь, совершает работу. Вращение колеса турбины через редуктор и дифференциал передается на внутренний и внешний гребные валы, вращающиеся в противоположные стороны.

В качестве движителей большинства современных торпед используются гребные винты. Передний винт – на наружном валу с правым вращением, задний – на внутреннем – с левым. Благодаря этому уравновешиваются моменты сил, отклоняющих торпеду от заданного направления движения.

Эффективность двигателей характеризуется величиной коэффициента полезного действия с учётом влияния гидродинамических свойств корпуса торпеды. Коэффициент снижается при достижении винтами частоты вращения, при которой на лопастях начинается

кавитация 1 . Одним из путей борьбы с этим вредным явлением стало



применение насадок на винты, позволяющее получить водомётный движитель (рис. 2.4).

К числу основных недостатков ЭСУ рассмотренного типа относятся:

Высокая шумность связанная с большим числом быстро вращающихся массивных механизмов и наличием выхлопа;

Снижение мощности двигателя и, как следствие, скорости хода торпеды с ростом глубины, обусловленное увеличением противодавления выхлопным газам;

Постепенное уменьшение массы торпеды при её движении вследствие расхода энергокомпонентов;

Поиски путей, обеспечивающих исключение перечисленных недостатков, привели к созданию электрических ЭСУ.

2.1.2. Электрические ЭСУ торпед

Источниками энергии электрических ЭСУ являются химические вещества (рис. 2.5).

Химические источники тока должны отвечать ряду требований:

Допустимость высоких разрядных токов;

Работоспособность в широком интервале температур;

Минимальный саморазряд при хранении и отсутствие газовыделения;


1 Кавитация – образование в капельной жидкости полостей, заполненных газом, паром или их смесью. Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения.

Малые габариты и масса.

Наиболее широкое распространение в современных боевых торпедах нашли батареи одноразового действия.

Главным энергетическим показателем химического источника тока является его ёмкость – количество электричества, которое может отдать полностью заряженная батарея при разряде током определённой силы. Она зависит от материала, конструкции и величины активной массы пластин источников, разрядного тока, температуры, концентрации электро



лита и др.

Впервые в электрических ЭСУ были применены свинцово-кислотные аккумуляторные батареи (АБ). Их электроды: перекись свинца («-») и чистый губчатый свинец («+»), помещались в раствор серной кислоты. Удельная ёмкость таких батарей составляла 8 Вт · ч/кг массы, что в сравнении с химическими топливами было незначительной величиной. Торпеды с такими АБ имели малые скорость и дальность хода. Кроме этого, данные АБ имели высокий уровень саморазряда, а это требовало их периодической подзарядки при хранении на носителе, что было неудобно и небезопасно.

Следующим шагом в совершенствовании химических источников тока явилось применение щелочных АБ. В этих АБ в щелочной электролит помещались железоникелевые, кадмиево-никелевые или серебряно-цинковые электроды. Такие источники имели удельную ёмкость в 5-6 раз больше, чем свинцово-кислотные, что позволило резко увеличить скорость и дальность хода торпед. Их дальнейшее развитие привело к появлению одноразовых серебряно-магниевых батарей, использующих в качестве электролита забортную морскую воду. Удельная ёмкость таких источников возросла до 80 Вт · ч /кг, что вплотную приблизило скорости и дальности электрических торпед к аналогичным параметрам парогазовых.

Сравнительная характеристика источников энергии электрических торпед приведена в табл. 2.1.

Таблица 2.1

Двигателями электрических ЭСУ являются электродвигатели (ЭД) постоянного тока последовательного возбуждения (рис. 2.6).

Большинство торпедных ЭД являются двигателями бирототивного типа, в которых якорь и магнитная система вращаются одновременно в противоположные стороны. Они имеют большую мощность и не нуждаются в дифференциале и редукторе, что значительно снижает шумность и увеличивает удельную мощность ЭСУ.

Движители электрических ЭСУ аналогичны движителям парогазовых торпед.

Достоинствами рассмотренных ЭСУ являются:

Низкая шумность;

Постоянная, не зависящая от глубины хода торпеды мощность;

Неизменность массы торпеды в течение всего времени её движения.

К недостаткам следует отнести:


Источниками энергии реактивных ЭСУ являются вещества, приведённые на рис. 2.7.

Они представляют собой топливные заряды, выполненные в виде цилиндрических шашек или стержней, состоящих из смеси комбинаций представленных веществ (горючего, окислителя и добавок). Эти смеси обладают свойствами пороха. Реактивные двигатели не имеют промежуточных элементов – механизмов и гребных винтов. Основные части такого двигателя – камера сгорания и реактивное сопло. В конце 80-х годов в некоторых торпедах начали использовать гидрореагирующие топлива – сложные по составу твёрдые вещества на основе алюминия , магния или лития. Подогретые до температуры плавления, они бурно реагируют с водой, выделяя большое количество энергии.

2.2. Системы управления движением торпед

Движущаяся торпеда совместно с окружающей её морской средой образует сложную гидродинамическую систему. Во время движения на торпеду действуют:

Сила тяжести и выталкивающая сила;

Тяга двигателя и сопротивление воды;

Внешние воздействующие факторы (волнение моря, изменение плотности воды и др.). Первые два фактора известны и могут быть учтены. Последние – имеют случайный характер. Они нарушают динамическое равновесие сил, отклоняют торпеду от расчётной траектории.

Системы управления (рис. 2.8) обеспечивают:

Устойчивость движения торпеды на траектории;

Изменение траектории движения торпеды в соответствии с заданной программой;


В качестве примера рассмотрим структуру и принцип действия сильфонно - маятникового автомата глубины, изображенного на рис. 2.9.

Основой прибора является гидростатический аппарат на базе сильфона (гофрированная труба с пружиной) в комбинации с физическим маятником. Давление воды воспринимается крышкой сильфона. Оно уравновешивается пружиной, упругость которой устанавливается перед выстрелом в зависимости от заданной глубины движения торпеды.

Действие прибора осуществляется в следующей последовательности:

Изменение глубины торпеды относительно заданной;

Сжатие (или растяжение) пружины сильфона;

Перемещение зубчатой рейки;

Вращение шестерни;

Поворот эксцентрика;

Смещение балансира;

Движение клапанов золотника;

Перемещение поршня рулевой машинки;

Перекладка горизонтальных рулей;

Возврат торпеды на установленную глубину.

В случае появления дифферента торпеды происходит отклонение маятника от вертикального положения. При этом аналогично предыдущему перемещается балансир, что приводит к перекладке тех же рулей.

Приборы управления движением торпеды по курсу (K Т )

Принцип построения и действия прибора может быть пояснён схемой, изображённой на рис. 2.10.

Основой прибора является гироскоп с тремя степенями свободы. Он представляет собой массивный диск с лунками (углублениями). Сам диск подвижно укреплён в рамках, образующих так называемый кардановый подвес.

В момент выстрела торпеды воздух высокого давления из воздушного резервуара поступает на лунки ротора гироскопа. За 0.3…0,4 с ротор набирает до 20000 оборотов в минуту. Дальнейшее увеличение числа оборотов до 40000 и поддержание их на дистанции производится путем подачи напряжения на ротор гироскопа, являющегося якорем асинхронного ЭД переменного тока частотой 500 Гц. При этом гироскоп приобретает свойство сохранять неизменным направление своей оси в пространстве. Эта ось устанавливается в положение, параллельное продольной оси торпеды. В таком случае токосъёмник диска с полукольцами находится на изолированном зазоре между полукольцами. Цепь питания реле разомкнута, контакты реле KP тоже разомкнуты. Положение клапанов золотника определяется пружиной.



При отклонении торпеды от заданного направления (курса) поворачивается диск, связанный с корпусом торпеды. Токосъёмник оказывается на полукольце. Через обмотку реле начинает протекать ток. Замыкаются контакты Kp. Электромагнит получает питание, его стержень опускается вниз. Клапаны золотника смещаются, рулевая машинка перекладывает вертикальные рули. Торпеда возвращается к установленному курсу.

Если на корабле установлен неподвижный торпедный аппарат, то при торпедной стрельбе к углу упреждения j (см. рис.1.5) должен быть алгебрарически приплюсован курсовой угол, под которым находится цель в момент залпа (q 3 ). Полученный угол (ω), называемый углом гироскопического прибора, или углом первого поворота торпеды, может быть введён в торпеду перед выстрелом путём поворота диска с полукольцами. Таким образом исключается необходимость изменения курса корабля.

Приборы управления торпедой по крену (γ)

Крен торпеды – это поворот её вокруг продольной оси. Причинами крена являются циркуляция торпеды, перегребание одного из винтов и др. Крен приводит к отклонению торпеды от заданного курса и смещениям зон реагирования системы самонаведения и неконтактного взрывателя.

Креновыравнивающий прибор представляет собой сочетание гировертикали (вертикально установленного гироскопа) с маятником, перемещающимся в перпендикулярной плоскости, продольной оси торпеды. Прибор обеспечивает перекладку органов управления γ – элеронов в разные стороны – «враздрай» и, таким образом, возвращение торпеды к значению крена, близкому к нулю.

Приборы маневрирования



Предназначены для программного маневрирования торпеды по курсу на траектории движения. Так, например, в случае промаха торпеда начинает циркуляцию или зигзаг, обеспечивая неоднократное пересечение курса цели (рис. 2.11).

Прибор связан с наружным гребным валом торпеды. По числу оборотов вала определяется пройденное расстояние. В момент достижения установленной дистанции начинается маневрирование. Дистанция и вид траектории маневрирования вводятся в торпеду перед выстрелом.

Точность стабилизации движения торпеды по курсу приборами автономного управления, имея погрешность ~1% от пройденной дистанции, обеспечивает эффективную стрельбу по целям, идущим постоянным курсом и скоростью на дистанции до 3,5…4 км. На больших дистанциях эффективность стрельбы падает. При движении цели переменными курсом и скоростью точность стрельбы становится неприемлемой даже и на меньших расстояниях.

Стремление повысить вероятность поражения надводной цели, а также обеспечить возможность поражения ПЛ в подводном положении на неизвестной глубине, привели к появлению в 40-х годах торпед с системами самонаведения.

2.2.2. Системы самонаведения

Системы самонаведения (ССН) торпед обеспечивают:

Обнаружение целей по их физическим полям;

Определение положения цели относительно продольной оси торпеды;

Выработку необходимых команд рулевым машинкам;

Наведение торпеды на цель с точностью, необходимой для срабатывания неконтактного взрывателя торпеды.

ССН значительно повышает вероятность поражения цели. Одна самонаводящаяся торпеда эффективнее залпа из нескольких торпед с автономными системами управления. Особенно важны ССН при стрельбе по ПЛ, находящимися на большой глубине.

ССН реагирует на физические поля кораблей. Наибольшей дальностью распространения в водной среде обладают акустические поля. Поэтому ССН торпед являются акустическими и подразделяются на пассивные, активные и комбинированные.

Пассивные ССН

Пассивные акустические ССН реагируют на первичное акустическое поле корабля – его шум. Работают скрытно. Однако плохо реагируют на тихоходные (из-за слабого шума) и обесшумленные корабли. В этих случаях шум самой торпеды может оказаться больше шума цели.

Возможность обнаружения цели и определения её положения относительно торпеды обеспечивается созданием гидроакустических антенн (электроакустических преобразователей – ЭАП), обладающих направленными свойствами (рис. 2.12, а).

Наиболее широкое применение получили равносигнальный и фазоамплитудный методы.


В качестве примера рассмотрим ССН, использующую фазоамплитудный метод (рис. 2.13).

Приём полезных сигналов (шума движущегося объекта) осуществляется ЭАП, состоящим из двух групп элементов, формирующих одну диаграмму направленности (рис. 2.13, а). При этом в случае отклонения цели от оси диаграммы на выходах ЭАП действуют два равных по значению, но сдвинутых по фазе j напряжения E 1 и E 2. (рис. 2.13, б).

Фазосдвигающее устройство сдвигает оба напряжения по фазе на один и тот же угол u (обычно равный p/2) и производит суммирование действующих сигналов следующим образом:

E 1+ E 2= U 1 и E 2+ E 1= U 2.

В результате этого напряжение одинаковой амплитуды, но разной фазы E 1 и E 2 преобразуются в два напряжения U 1 и U 2 одной и той же фазы, но разной амплитуды (отсюда название метода). В зависимости от положения цели относительно оси диаграммы направленности можно получить:

U 1 > U 2 – цель правее оси ЭАП;

U 1 = U 2 – цель на оси ЭАП;

U 1 < U 2 – цель левее оси ЭАП.

Напряжения U 1 и U 2 усиливаются, преобразуются детекторами в постоянные напряжения U ’1 и U ’2 соответствующей величины и подаются на анализирующе-командное устройство АКУ. В качестве последнего может быть использовано поляризованное реле с якорем, находящемся в нейтральном (среднем) положении (рис. 2.13, в).

При равенстве U ’1 и U ’2 (цель на оси ЭАП) ток в обмотке реле равен нулю. Якорь неподвижен. Продольная ось движущейся торпеды направлена на цель. В случае смещения цели в ту или иную сторону через обмотку реле начинает протекать ток соответствующего направления. Возникает магнитный поток, отклоняющий якорь реле и вызывающий перемещение золотника рулевой машинки. Последняя обеспечивает перекладку рулей, а значит и поворот торпеды до возвращения цели на продольную ось торпеды (на ось диаграммы направленности ЭАП).

Активные ССН

Активные акустические ССН реагируют на вторичное акустическое поле корабля – отражённые сигналы от корабля или от его кильватерной струи (но не на шум корабля).

В своём составе они должны иметь, помимо рассмотренных ранее узлов, передающее (генерирующее) и коммутационное (переключающее) устройства (рис.2.14). Коммутационное устройство обеспечивает переключение ЭАП с излучения на приём.


Газовые пузырьки являются отражателями звуковых волн. Длительность сигналов, отражённых от кильватерной струи, больше длительности излучаемых. Это отличие и используется как источник информации о КС.

Торпеда выстреливает со смещением точки прицеливания в сторону, противоположную направлению движения цели так, чтобы она оказалась за кормой цели и пересекла кильватерную струю. Как только это происходит, торпеда делает поворот в сторону цели и снова входит в кильватерную струю под углом порядка 300. Так продолжается до момента прохождения торпеды под целью. В случае проскакивания торпеды перед носом цели торпеда делает циркуляцию, снова обнаруживает кильватерную струю и повторно осуществляет маневрирование.

Комбинированные ССН

Комбинированные системы включают в себя как пассивную, так и активную акустические ССН, что позволяет исключить недостатки каждой в отдельности. Современные ССН обнаруживают цели на дистанциях до 1500…2000 м. Поэтому при стрельбе на большие дистанции и особенно по резко маневрирующей цели возникает необходимость корректуры курса торпеды до момента захвата цели ССН. Эту задачу выполняют системы телеуправления движением торпеды.

2.2.3. Системы телеуправления

Системы телеуправления (ТУ) предназначены для коррекции траектории движения торпеды с корабля-носителя.

Телеуправление осуществляется по проводу (рис. 2.16, а, б).

Чтобы уменьшить натяжение провода при движении и корабля, и торпеды используют две одновременно разматывающиеся вьюшки. На подводной лодке (рис. 2.16, а) вьюшка 1 размещается в ТА и выстреливается вместе с торпедой. Она удерживается бронированным кабелем длиной порядка тридцати метров.

Принцип построения и действия системы ТУ поясняется рис. 2.17. С помощью гидроакустического комплекса и его индикатора осуществляется обнаружение цели. Полученные данные о координатах этой цели поступают в счетно-решающий комплекс. Сюда же подаются сведения о параметрах движения своего корабля и установленной скорости торпеды. Счетно-решающий комплекс вырабатывает курс торпеды КТ и h T –глубину ее движения. Эти данные вводятся в торпеду, и производится выстрел.



С помощью датчика команд осуществляется преобразование текущих параметров КТ и h T в серию импульсных электрических кодированных сигналов управления. Эти сигналы по проводу передаются на торпеду. Система управления торпеды декодирует принятые сигналы и преобразует их в напряжения, являющиеся управляющими для работы соответствующих каналов управления.

В случае необходимости, наблюдая на индикаторе гидроакустического комплекса носителя за положением торпеды и цели, оператор, используя пульт управления, может корректировать траекторию движения торпеды, направляя ее на цель.

Как уже было отмечено, на больших дистанциях (более 20 км) ошибки телеуправления (из-за ошибок гидроакустического комплекса) могут составлять сотни метров. Поэтому систему ТУ совмещают с системой самонаведения. Последняя включается по команде оператора на расстоянии 2…3 км от цели.

Рассмотренная система ТУ является односторонней. Если с торпеды на корабль поступают сведения о состоянии бортовых приборов торпеды, траектории ее движения, характере маневрирования цели, то такая система ТУ будет двухсторонней. Новые возможности в реализации двухсторонних систем ТУ торпедой открывает применение волоконно - оптических линий связи.

2.3. Запальная принадлежность и взрыватели торпед

2.3.1. Запальная принадлежность

Запальной принадлежностью (ЗП) боевого заряда торпеды называют совокупность первичного и вторичного детонаторов.

Состав ЗП обеспечивает ступенчатую детонацию ВВ БЗО, что повышает безопасность обращения с окончательно приготовленной торпедой, с одной стороны, и гарантирует надежную и полную детонацию всего заряда – с другой.

Первичный детонатор (рис. 2.18), состоящий из капсюля воспламенителя и капсюля детонатора, снаряжается высокочувствительными (инициирующими) ВВ – гремучей ртутью или азидом свинца, которые взрываются от накола или нагрева. В целях безопасности первичный детонатор содержит небольшое количество ВВ, недостаточное для взрыва основного заряда.



Вторичный детонатор – запальный стакан – содержит менее чувствительное бризантное ВВ – тетрил, флегматизированный гексоген в количестве 600…800 г. Этого количества уже достаточно для детонации всего основного заряда БЗО.

Таким образом, взрыв осуществляется по цепочке: взрыватель – капсюль-воспламенитель – капсюль-детонатор – запальный стакан – заряд БЗО.

2.3.2. Контактные взрыватели торпед

Контактный взрыватель (КВ) торпеды предназначен для накола капсюля воспламенителя первичного детонатора и вызова тем самым взрыва основного заряда БЗО в момент контакта торпеды с бортом цели.

Наибольшее распространение получили контактные взрыватели ударного (инерционного) действия. При ударе торпеды в борт цели инерционное тело (маятник) отклоняется от вертикального положения и освобождает боёк, который под действием боевой пружины движется вниз и накалывает капсюль – воспламенитель.

При окончательном приготовлении торпеды к выстрелу контактный взрыватель соединяется с запальной принадлежностью и устанавливается в верхнюю часть БЗО.

Во избежание взрыва снаряжённой торпеды от случайного сотрясения или удара о воду инерционная часть взрывателя имеет предохранительное устройство, стопорящее боёк. Стопор связан с вертушкой, начинающей вращение с началом движения торпеды в воде. По прохождении торпедой дистанции около 200 м червяк вертушки расстопоривает боёк и взрыватель приходит в боевое положение.

Стремление воздействовать на самую уязвимую часть корабля – его днище и обеспечить при этом неконтактный подрыв заряда БЗО, производящий больший разрушительный эффект, привело к созданию в 40-х годах неконтактного взрывателя.

2.3.3. Неконтактные взрыватели торпед

Неконтактный взрыватель (НВ) замыкает цепь запала на подрыв заряда БЗО в момент прохождения торпеды вблизи цели под воздействием на взрыватель того или иного физического поля цели. При этом глубина хода противокорабельной торпеды устанавливается на несколько метров больше величины предполагаемой осадки корабля – цели.

Наиболее широкое применение получили акустические и электромагнитные неконтактные взрыватели.



Устройство и действие акустического НВ поясняет рис. 2.19.

Импульсный генератор (рис. 2.19, а) вырабатывает кратковременные импульсы электрических колебаний ультразвуковой частоты, следующие через малые промежутки времени. Через коммутатор они поступают на электроакустические преобразователи (ЭАП), преобразующие электрические колебания в ультразвуковые акустические, распространяющиеся в воде в пределах зоны, показанной на рисунке.

При прохождении торпеды вблизи цели (рис. 2.19, б) от последней будут получены отражённые акустические сигналы, которые воспринимаются и преобразуются ЭАП в электрические. После усиления они анализируются в исполнительном устройстве и запоминаются. Получив несколько аналогичных отражённых сигналов подряд, исполнительное устройство подключает источник питания к запальной принадлежности – происходит взрыв торпеды.



Устройство и действие электромагнитного НВ поясняется рис. 2.20.

Кормовая (излучающая) катушка создаёт переменное магнитное поле. Оно воспринимается двумя носовыми (приёмными) катушками, включёнными встречно, в результате чего их разностная ЭДС равна
нулю.

При прохождении торпеды вблизи цели, имеющей своё электромагнитное поле, происходит искажение поля торпеды. ЭДС в приёмных катушках станут разными и появится разностная ЭДС. Усиленное напряжение поступает на исполнительное устройство, подающее питание на запальное устройство торпеды.

На современных торпедах используются комбинированные взрыватели, являющиеся сочетанием контактного с одним из типов неконтактного взрывателя.

2.4. Взаимодействие приборов и систем торпед

при их движении на траектории

2.4.1. Назначение, основные тактико-технические параметры

парогазовых торпед и взаимодействие приборов

и систем при их движении

Парогазовые торпеды предназначены для уничтожения надводных кораблей, транспортов и, реже, ПЛ противника.

Основные тактико-технические параметры парогазовых торпед, получивших наиболее широкое распространение, приведены в табл.2.2.

Таблица 2.2

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

70 или 44

Турбина

Турбина

Турбина

Нет сведений

Зарубежные

Турбина

Поршневой

Открывание запирающего воздушного клапана (см. рис. 2.3) перед выстрелом торпеды;

Выстрел торпеды, сопровождаемый её движением в ТА;

Откидывание курка торпеды (см. рис. 2.3) курковым зацепом в трубе

торпедного аппарата;

Открывание машинного крана;

Подача сжатого воздуха непосредственно на прибор курса и креновыравнивающий прибор для раскручивания роторов гироскопов, а также на воздушный редуктор;

Воздух пониженного давления с редуктора поступает на рулевые машинки, обеспечивающие перекладку рулей и элеронов, и на вытеснение воды и окислителя из резервуаров;

Поступление воды на вытеснение горючего из резервуара;

Подача горючего, окислителя и воды на парогазовый генератор;

Поджигание топлива зажигательным патроном;

Образование парогазовой смеси и подача её на лопатки турбины;

Вращение турбины, а значит, и винтовой торпеды;

Попадание торпеды в воду и начало её движения в ней;

Действие автомата глубины (см. рис. 2.10), прибора курса (см. рис. 2.11), креновыравнивающего прибора и движение торпеды в воде по установленной траектории;

Встречные потоки воды вращают вертушку, которая при проходе торпедой 180…250 м приводит ударный взрыватель в боевое положение. Этим исключается подрыв торпеды на корабле и вблизи его от случайных толчков и ударов;

Через 30…40 с после выстрела торпеды включаются НВ и ССН;

ССН начинает поиск КС, излучая импульсы акустических колебаний;

Обнаружив КС (получив отражённые импульсы) и пройдя его, торпеда поворачивает в сторону цели (сторона поворота введена перед выстрелом);

ССН обеспечивает маневрирование торпеды (см. рис. 2.14);

При прохождении торпеды вблизи цели или при ударе о неё срабатывают соответствующие взрыватели;

Взрыв торпеды.

2.4.2. Назначение, основные тактико-технические параметры электрических торпед и взаимодействие приборов

и систем при их движении

Электрические торпеды предназначены для уничтожения подводных лодок противника.

Основные тактико-технические параметры электрических торпед, получивших наиболее широкое распространение. Приведены в табл. 2.3.

Таблица 2.3

Наименование торпеды

Скорость,

Дальность

двигателя

носитель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Зарубежные

сведений

сведений


* СЦАБ - серебряно-цинковая аккумуляторная батарея.

Взаимодействие узлов торпеды осуществляется следующим образом:

Открывание запирающего клапана баллона ВВД торпеды;

Замыкание «+» электрической цепи – перед выстрелом;

Выстрел торпеды, сопровождаемый её движением в ТА (см. рис. 2.5);

Замыкание пускового контактора;

Подача воздуха высокого давления на прибор курса и креновыравнивающий прибор;

Подача редуцированного воздуха в резиновую оболочку для вытеснения из неё электролита в химическую батарею (возможный вариант);

Вращение электродвигателя, а значит и винтов торпеды;

Движение торпеды в воде;

Действие автомата глубины (рис. 2.10), прибора курса (рис. 2.11), креновыравнивающего прибора на установленной траектории движения торпеды;

Через 30…40 с после выстрела торпеды включаются НВ и активный канал ССН;

Поиск цели активным каналом ССН;

Получение отражённых сигналов и наведение на цель;

Периодическое включение пассивного канала для пеленгования шумов цели;

Получение надёжного контакта с целью пассивным каналом, отключение активного канала;

Наведение торпеды на цель пассивным каналом;

В случае потери контакта с целью ССН даёт команду на выполнение вторичного поиска и наведения;

При прохождении торпеды вблизи цели срабатывает НВ;

Взрыв торпеды.

2.4.3. Перспективы развития торпедного оружия

Необходимость совершенствования торпедного оружия вызывается постоянным улучшением тактических параметров кораблей. Так, например, глубина погружения атомных ПЛ достигла 900 м, а их скорость движения 40 узлов.

Можно выделить несколько путей, по которым должно осуществляться совершенствование торпедного оружия (рис. 2.21).

Улучшение тактических параметров торпед


Чтобы торпеда настигла цель, она должна иметь скорость, как минимум, в 1,5 раз больше, чем атакуемый объект (75…80 узлов), дальность хода – более 50 км, глубину погружения не менее 1000 м.

Очевидно, что перечисленные тактические параметры определяются техническими параметрами торпед. Следовательно, в данном случае должны рассматриваться технические решения.

Увеличение скорости торпеды может быть осуществлено за счёт:

Применения более эффективных химических источников питания двигателей электрических торпед (магний-хлор-серебряных, серебряно-алюминиевых, использующих в качестве электролита морскую воду).

Создания парогазовых ЭСУ замкнутого цикла для противолодочных торпед;

Уменьшения лобового сопротивления воды (полировка поверхности корпуса торпеды, сокращение числа ее выступающих частей, подбор соотношения длины к диаметру торпеды), поскольку V Т прямо пропорциональна сопротивлению воды.

Внедрения ракетных и гидрореактивных ЭСУ.

Увеличение дальности хода торпеды ДТ достигается теми же путями, что и увеличение её скорости V Т, ибо ДТ= V Т t, где t – время движения торпеды, определяемое количеством энергокомпонентов ЭСУ.

Увеличение глубины хода торпеды (или глубины выстрела) требует усиления корпуса торпеды. Для этого должны применяться более прочные материалы, например алюминиевые или титановые сплавы.

Повышение вероятности встречи торпеды с целью

Применением в системах управления волоконно-оптических про

водов. Это позволяет обеспечить двухстороннюю связь с торпе-

дой, а значит, увеличить объем информации о местоположении

цели, повысить помехоустойчивость канала связи с торпедой,

уменьшить диаметр провода;

Созданием и применением в ССН электроакустических преобра-

зователей, выполненных в виде антенных решеток, что позволит

улучшить процесс обнаружения и пеленгования торпедой цели;

Применением на борту торпеды высокоинтегральной электронной

вы числительной техники, обеспечивающей более эффективную

работу ССН;

Увеличением радиуса реагирования ССН повышением ее чувст-

вительности;

Снижением влияния средств противодействия путем использо -

вания в торпеде устройств, осуществляющих спектральный

анализ принимаемых сигналов, их классификацию и выявление

ложных целей;

Разработкой ССН на базе инфракрасной техники, не подвержен-

ной воздействию помех;

Снижением уровня собственных шумов торпеды путем совершен-

ствования двигателей (создание бесколлекторных электродвига-

телей переменного тока), механизмов передачи вращения и

винтов торпед.

Повышение вероятности поражения цели

Решение этой проблемы может быть достигнуто:

Подрывом торпеды вблизи наиболее уязвимой части (например,

под килем) цели, что обеспечивается совместной работой

ССН и ЭВМ;

Подрывом торпеды на таком расстоянии от цели, при котором на

блюдается максимальное воздействие ударной волны и расши

рение газового пузыря, возникающего при взрыве;

Созданием боевой части кумулятивного (направленного действия);

Расширением диапазона мощностей ядерной боевой части, что

связано как с объектом поражения, так и с собственным безопас -

ным радиусом. Так, заряд мощностью 0,01 кт должен применяться

на дистанции не менее 350 м, 0,1 кт – не менее 1100 м.

Повышение надежности торпед

Опыт эксплуатации и применения торпедного оружия показывает, что после длительного хранения некоторая часть торпед не способна выполнять возложенные на них функции. Это свидетельствует о необходимости повышения надежности торпед, что достигается:

Повышением уровня интеграции электронной аппаратуры торпе -

ды. Это обеспечивает повышение надежности электронных уст-

ройств в 5 – 6 раз, уменьшает занимаемые объемы, снижает

стоимость аппаратуры;

Созданием торпед модульной конструкции, что позволяет при мо-

дернизации заменять менее надежные узлы на более надежные;

Совершенствованием технологии изготовления приборов, узлов и

систем торпед.

Таблица 2.4

Наименование торпеды

Скорость,

Дальность

двигателя

Энергоноситель

торпеды, кг

Масса ВВ, кг

Носитель

поражения

Отечественные

Комбинированная ССН

Комбинированная ССН,

ССН по КС

Поршневой

Унитарный

Комбинированная ССН,

ССН по КС

Нет сведений

Зарубежные

«Барракуда»

Турбина

Окончание табл. 2.4

Некоторые из рассмотренных путей уже нашли свое отражение в ряде торпед, представленных в табл. 2.4.

3. ТАКТИЧЕСКИЕ СВОЙСТВА И ОСНОВЫ БОЕВОГО ПРИМЕНЕНИЯ ТОРПЕДНОГО ОРУЖИЯ

3.1. Тактические свойства торпедного оружия

Тактические свойства любого оружия – это совокупность качеств, характеризующих боевые возможности оружия.

Основными тактическими свойствами торпедного оружия являются:

1. Дальность хода торпеды.

2. Скорость ее хода.

3. Глубина хода или глубина выстрела торпеды.

4. Способность наносить повреждения наиболее уязвимой (подводной) части корабля. Опыт боевого применения показывает, что для уничтожения большого противолодочного корабля требуется 1 – 2 торпеды, крейсера – 3 – 4, авианосца – 5 – 7, подводной лодки – 1 – 2 торпеды.

5. Скрытность действия, что объясняется малой шумностью, бесследностью, большой глубиной хода.

6. Высокая эффективность, обеспечиваемая применением систем телеуправления, что значительно повышает вероятность поражения целей.

7. Возможность уничтожения целей, идущих с любой скоростью, а подводных лодок, идущих и на любой глубине.

8. Высокая готовность к боевому применению.

Однако наряду с положительными свойствами имеются и отрицательные:

1. Относительно большое время воздействия на противника. Так, например, даже при скорости 50 узлов торпеде требуется примерно 15 мин, чтобы достичь цель, находящуюся на расстоянии 23 км. За этот промежуток времени цель имеет возможность осуществить маневрирование, применить средства противодействия (боевые и технические), чтобы уклониться от торпеды.

2. Трудность уничтожения цели на малых и больших дистанциях. На малых – из-за возможности поражения стреляющего корабля, на больших – из-за ограниченности дальности хода торпед.

3.2. Организация и виды подготовки торпедного оружия

к стрельбе

Организация и виды подготовки торпедного оружия к стрельбе определяются «Правилами минной службы» (ПМС).

Подготовка к стрельбе подразделяется:

На предварительную;

Окончательную.

Предварительная подготовка начинается по сигналу: «Корабль к бою и походу приготовить». Заканчивается обязательным выполнением всех регламентированных действий.

Окончательная подготовка начинается с момента обнаружения цели и получения целеуказания. Заканчивается в момент занятия кораблём позиции залпа.

Основные действия, производимые при подготовке к стрельбе, приведены в таблице.

В зависимости от условий стрельбы окончательная подготовка может быть:

Сокращённой;

При малой окончательной подготовке для наведения торпеды учитываются только пеленг на цель и дистанция. Угол упреждения j не рассчитывается (j =0).

При сокращённой окончательной подготовке учитываются пеленг на цель, дистанция и сторона движения цели. При этом угол упреждения j устанавливается равным некоторой постоянной величине (j=const).

При полной окончательной подготовке учитываются координаты и параметры движения цели (КПДЦ). В этом случае определяется текущее значение угла упреждения (jТЕК).

3.3. Способы стрельбы торпедами и их краткая характеристика

Существует ряд способов стрельбы торпедами. Эти способы определяются теми техническими средствами, которыми оснащены торпеды.

При автономной системе управления стрельба возможна:

1. В настоящее место цели (НМЦ), когда угол упреждения j=0 (рис. 3.1, а).

2. В область вероятного местоположения цели (ОВМЦ), когда угол упреждения j=const (рис. 3.1, б).

3. В упреждённое место цели (УМЦ), когда j=jТЕК (рис. 3.1, в).



Во всех представленных случаях траектория движения торпеды является прямолинейной. Наибольшая вероятность встречи торпеды с целью достигается в третьем случае, однако этот способ стрельбы требует максимального времени на подготовку.

При телеуправлении, когда управление движения торпеды корректируется командами с корабля, траектория будет криволинейной. При этом возможно движение:

1) по траектории, обеспечивающей нахождение торпеды на линии торпеда – цель;

2) в упреждённую точку с корректировкой угла упреждения по

мере приближения торпеды к цели.


При самонаведении используется сочетание автономной системы управления с ССН или телеуправления с ССН. Следовательно, до начала реагирования ССН торпеда движется так же, как рассмотрено выше, а затем, используя:


Траекторию догонного типа, когда продолжение оси тор педы всё

время совпадает с направлением на цель (рис. 3.2, а).

Недостатком этого способа является то, что торпеда часть своего

пути проходит в кильватерной струе, что ухудшает условия рабо

ты ССН (кроме ССН по кильватерному следу).

2. Так называемую траекторию коллизионного типа (рис. 3.2, б), когда продольная ось торпеды всё время образует с направлением на цель постоянный угол b. Этот угол для конкретной ССН постоянен или может оптимизироваться бортовой ЭВМ торпеды.

Список литературы

Теоретические основы торпедного оружия/ , . М.: Воениздат, 1969.

Лобашинский. /ДОСААФ. М., 1986.

Забнев оружие. М.: Воениздат, 1984.

Сычёв оружие /ДОСААФ. М., 1984.

Чечот О. Скоростная торпеда 53-65: история создания // Морской сборник 1998, №5. с. 48-52.

Из истории развития и боевого применения торпедного оружия

1. Общие сведения о торпедном оружии …………………………………… 4

2. Устройство торпед …………………………………………………………… 13

3. Тактические свойства и основы боевого применения