Основные поражающие факторы наземного ядерного взрыва. Ядерный взрыв

Человека практически на каждом шагу могут подстерегать различные стихийные бедствия или чрезвычайные ситуации. Предсказать беду практически невозможно, поэтому лучше всего, если каждый из нас будет знать, как вести себя в том или ином случае и каких вредных факторов стоит остерегаться. Давайте поговорим о том, что является поражающими факторами взрыва, рассмотрим, как себя вести, если случилась такая ЧС.

Что такое взрыв?

Каждый из нас представляет, что это такое. Если не доводилось сталкиваться с подобным явлением в настоящей жизни, то по крайней мере видели в кино или в новостях.

Взрыв - это химическая реакция, протекающая с огромной скоростью. При этом еще идет выделение энергии и образование сжатых газов, которые и способны оказывать на людей поражающее воздействие.

При несоблюдении техники безопасности или нарушении технологических процессов могут случаться с взрывами на промышленных объектах, в зданиях, на коммуникациях. Часто именно человеческий фактор является

Есть также особая группа веществ, которые относятся к взрывоопасным, и при определенных условиях они способны взрываться. Отличительной особенностью взрыва можно назвать его быстротечность. Всего доли секунды хватает, чтобы, например, помещение взлетело на воздух при При этом температура достигает нескольких десятков тысяч градусов по Цельсию. Поражающими факторами взрыва могут быть нанесены серьезные увечья человеку, они способны оказывать свое негативное влияние на людей на определенном расстоянии.

Не каждое такое ЧП сопровождается одинаковыми разрушениями, последствия будут зависеть от мощности и места, где это все происходит.

Последствия взрыва

Поражающими факторами взрыва являются:

  • Струя газообразных веществ.
  • Высокая температура.
  • Световое излучение.
  • Резкий и громкий звук.
  • Осколки.
  • Воздушная ударная волна.

Такие явления можно наблюдать при взрыве как боевых зарядов, так и бытового газа. Первые часто используют для проведения боевых операций, их применяют только высококлассные специалисты. Но бывают ситуации, когда предметы, способные взрываться, попадают в руки гражданских людей, и особенно страшно, если это оказываются дети. В таких случаях, как правило, взрывы заканчиваются трагедией.

Бытовой газ взрывается в основном тогда, если не соблюдаются правила его эксплуатации. Очень важно научить детей обращаться с газовыми приборами и на видном месте расположить номера телефонов спасательных служб.

Зоны поражения

Поражающими факторами взрыва могут быть нанесены человеку различной степени тяжести повреждения. Специалисты выделяют несколько зон:

  1. Зона I.
  2. Зона II.
  3. Зона III.

В первых двух последствия самые тяжелые: происходит обугливание тел под воздействием очень высоких температур и продуктов взрыва.

В третьей зоне, кроме непосредственного влияния факторов взрыва, можно наблюдать и косвенное. Воздействие ударной волны человеком воспринимается как сильный удар, при котором могут повреждаться:

  • внутренние органы;
  • органы слуха (разрыв барабанной перепонки);
  • мозг (сотрясение);
  • кости и ткани (переломы, различные травмы).

В самом тяжелом положении оказываются люди, которые встретили ударную волну в положении стоя за пределами укрытия. В такой ситуации часто имеет место летальный исход или же человек получает сильные ранения и тяжелые травмы, ожоги.

Виды поражения при взрывах

В зависимости от близости очага взрыва человек может получить поражения различной степени тяжести:

  1. Легкие. Сюда можно отнести небольшое сотрясение мозга, частичную потерю слуха, ушибы. Госпитализация может даже не потребоваться.
  2. Средние. Это уже травма мозга с потерей сознания, кровотечения из ушей и носа, переломы и вывихи.
  3. Тяжелая степень повреждений включает сильную контузию, повреждение внутренних органов, осложненные переломы, иногда возможен смертельный исход.
  4. Крайне тяжелая степень. Практически в 100 % случаев заканчивается смертью пострадавшего.

Можно привести такой пример: при полном разрушении здания практически все погибают, кто там находился в этот момент, только счастливая случайность может спасти человеку жизнь. А при частичных разрушениях погибшие могут быть, но большая часть получит травмы различной степени тяжести.

Ядерный взрыв

Он является результатом срабатывания ядерного заряда. Это неуправляемый процесс, при котором происходит высвобождение огромного количества лучистой и тепловой энергии. Все это является результатом цепной реакции деления или термоядерного синтеза за короткий временной промежуток.

Главной отличительной чертой ядерного взрыва является то, что у него всегда есть центр - точка, где именно произошел взрыв, а также эпицентр - проекция этой точки на земную или водную поверхность.

Далее более подробно будут рассмотрены поражающие факторы взрыва и их характеристика. Такая информация должна доводиться до сведения населения. Как правило, ученики получают ее в школе, а взрослые - на рабочих местах.

Ядерный взрыв и его поражающие факторы

Ему подвергается все: почва, вода, воздух, инфраструктура. Самая большая опасность наблюдается в первые часы после выпадения "осадков". Так как в это время активность всех радиоактивных частиц максимальная.

Зоны ядерного взрыва

Чтобы определить характер возможных разрушений и объем аварийно-спасательных работ, делят на несколько зон:

  1. Зона полных разрушений. Здесь можно наблюдать 100 % потери среди населения, если оно не было защищено. Основные поражающие факторы взрыва оказывают свое максимальное воздействие. Можно видеть практически полное разрушение зданий, повреждение коммунальных сетей, полное уничтожение лесов.
  2. Вторая зона - участок, где наблюдаются сильные разрушения. Потери среди населения достигают 90 %. Большинство зданий разрушено, образуются сплошные завалы на местности, но убежищам и противорадиационным укрытиям удается устоять.
  3. Зона со средними разрушениями. Потери среди населения небольшие, но много раненых и травмированных. Есть частичное или полное разрушение зданий, образуются завалы. В укрытиях вполне можно спастись.
  4. Зона слабых разрушений. Здесь поражающими факторами взрыва оказывается минимальное воздействие. Разрушения незначительны, жертв среди людей практически нет.

Как защититься от последствий взрыва

Практически в каждом городе и более мелком населенном пункте должны в обязательном порядке сооружаться защитные укрытия. В них население обеспечивается продуктами питания и водой, а также индивидуальными средствами защиты, к которым можно отнести:

  • Перчатки.
  • Защитные очки.
  • Противогазы.
  • Респираторы.
  • Защитные костюмы.

Защита от поражающих факторов ядерного взрыва поможет свести к минимуму вред, оказываемый радиацией, излучением и ударной волной. Самое главное - использовать ее своевременно. Каждый должен иметь представление о том, как вести себя в такой ситуации, что необходимо предпринять, чтобы как можно меньше подвергнуться воздействию поражающих факторов.

Последствия любого взрыва могут угрожать не только здоровью человека, но и жизни. Поэтому необходимо прилагать все усилия, чтобы не допускать таких ситуаций вследствие халатного отношения к соблюдению правил безопасного обращения с взрывоопасными предметами и веществами.

Боевые свойства и поражающие факторы ядерного оружия. Виды ядерных взрывов и их отличие по внешним признакам. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

1. Боевые свойства и поражающие факторы ядерного оружия

Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

2. Виды ядерных взрывов и их отличие по внешним признакам

Ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные).

К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды) (рис. а).

Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким.

Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва.

Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров.

Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут.

(рис. б) столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы.

Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается.

Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений.

Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

Высотный ядерный взрыв производится на высоте от 10 км и более от поверхности земли. При высотных взрывах на высоте нескольких десятков километров в месте взрыва образуется шарообразная светящаяся область, размеры ее больше, чем при взрыве такой же мощности в приземном слое атмосферы. После остывания светящаяся область превращается в клубящееся кольцевое облако. Пылевой столб и облако пыли при высотном взрыве не образуются.

При ядерных взрывах на высотах до 25-30 км поражающими факторами этого взрыва являются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

С увеличением высоты взрыва вследствие разрежения атмосферы ударная волна значительно ослабевает, а роль светового излучения и проникающей радиации возрастает. Взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (ультракоротковолнового диапазона) и нарушать работу радиотехнических средств.

Радиоактивное заражение поверхности земли при высотных ядерных взрывах практически отсутствует.

Высотные взрывы могут применяться для уничтожения воздушных и космических средств нападения и разведки: самолетов, крылатых ракет, спутников, головных частей баллистических ракет.

Наземный ядерный взрыв. Наземным ядерным взрывом называется взрыв на поверхности земли или в воздухе на небольшой высоте, при котором светящаяся область касается земли.

При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. Если наземный взрыв осуществляется на поверхности земли (контактный взрыв) или в непосредственной близости от нее, в грунте образуется большая воронка, окруженная валом земли.

Размер и форма воронки зависят от мощности взрыва; диаметр воронки может достигать несколько сотен метров.

При наземном взрыве образуется мощное пылевое облако и столб пыли, чем при воздушном, причем столб пыли с момента его образования соединен с облаком взрыва, в результате чего в облако вовлекается огромное количество грунта, который придает ему темную окраску. Перемешиваясь с радиоактивными продуктами, грунт способствует их интенсивному выпадению из облака. При наземном взрыве радиоактивное заражение местности в районе взрыва и по следу движения облака значительно сильнее, чем при воздушном. Наземные взрывы предназначаются для разрушения объектов, состоящих из сооружений большой прочности, и поражения войск, находящихся в прочных укрытиях, если при этом допустимо или желательно сильное радиоактивное заражение местности и объектов в районе взрыва или на следе облака.

Эти взрывы применяются и для поражения открыто расположенных войск, если необходимо создать сильное радиоактивное заражение местности. При наземном ядерном взрыве поражающими факторами являются ударная волна, световое излучение, проникающая радиация радиоактивное заражение местности и электромагнитный импульс.

Подземным ядерным взрывом называется взрыв, произведенный на некоторой глубине в земле.

При таком взрыве светящаяся область может не наблюдаться; при взрыве создается огромное давление на грунт, образующаяся ударная волна вызывает колебания почвы, напоминающие землетрясение. В месте взрыва образуется большая воронка, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта; из воронки выбрасывается огромное количество грунта, перемешанного с радиоактивными веществами, которые образуют столб. Высота столба может достигать многих сотен метров.

При подземном взрыве характерного, грибовидного облака, как правило, не образуется. Образующийся столб имеет значительно более темную окраску, чем облако наземного взрыва. Достигнув максимальной высоты, столб начинает разрушаться. Радиоактивная пыль, оседая на землю, сильно заражает местность в районе взрыва и по пути движения облака.

Подземные взрывы могут осуществляться для разрушения особо важных подземных сооружений и образования завалов в горах в условиях, когда допустимо сильное радиоактивное заражение местности и объектов. При подземном ядерном взрыве поражающими факторами являются сейсмовзрывные волны и радиоактивное заражение местности.

Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли.

Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны.

Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва. Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

Подводный ядерный взрыв. Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине.

При таком взрыве вспышка и светящаяся область, как правило, не видны.

При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре.

Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром.

Спустя несколько, минут базисная волна смешивается с облаком султана (султан - клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности - поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров.

Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

3. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

Ударная волна

Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.

Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

Ударная волна проходит первые 1000 м за 2 сек, 2000 м - за 5 сек, 3000 м - за 8 сек.

За это время человек, увидев вспышку, может укрыться и тем самым уменьшить вероятность поражения волной или вообще избежать его.

Ударная волна может наносить поражения людям, разрушать или повреждать технику, вооружение, инженерные сооружения и имущество. Поражения, разрушения и повреждения вызываются как непосредственным воздействием ударной, волны, так и косвенно - обломками разрушаемых зданий, сооружений, деревьев и т.п.

Степень поражения людей и различных объектов зависит от того, на каком расстоянии от места взрыва и в каком положении они находятся. Объекты, расположенные на поверхности земли, повреждаются сильнее, чем заглубленные.

Световое излучение

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, источником которой является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Размеры светящейся области пропорциональны мощности взрыва. Световое излучение распространяется практически мгновенно (со скоростью 300000 км/сек) и длится в зависимости от мощности взрыва от одной до нескольких секунд. Интенсивность светового излучения и его поражающее действие уменьшаются с увеличением расстояния от центра взрыва; при увеличении расстояния в 2 и 3 раза интенсивность светового излучения снижается в 4 и 9 раз.

Действие светового излучения при ядерном взрыве заключается в нанесении поражений людям и животным ультрафиолетовыми, видимыми и инфракрасными (тепловыми) лучами в виде ожогов различной степени, а также в обугливании или возгорании воспламеняющихся частей и деталей сооружений, зданий, вооружения, боевой техники, резиновых катков танков и автомобилей, чехлов, брезентов и других видов имущества и материалов. При прямом наблюдении взрыва с близкого расстояния световое излучение причиняет повреждения сетчатке глаз и может вызвать потерю зрения (полностью или частично).

Проникающая радиация

Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу в виде лучевой болезни, особенно если он расположен открыто. Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров. Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характер
изовать величиной слоя половинного ослабления.

Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев - в 8 раз и т. д.

ЗНАЧЕНИЕ СЛОЯ ПОЛОВИННОГО ОСЛАБЛЕНИЯ ДЛЯ НЕКОТОРЫХ МАТЕРИАЛОВ

Материал

Плотность, г/см 3

Слой половинного ослабления, см

по нейтронам

по гамма-излучению

Полиэтилен

Коэффициент ослабления проникающей радиации при наземном взрыве мощностью 10 тыс. т. для закрытого бронетранспортера равен 1,1. Для танка - 6, для траншеи полного профиля - 5. Подбрустверные ниши и перекрытые щели ослабляют радиацию в 25-50 раз; покрытие блиндажа ослабляет радиацию в 200-400 раз, а покрытие убежища - в 2000-3000 раз. Стена железобетонного сооружения толщиной в 1 м ослабляет радиацию примерно в 1000 раз; броня танков ослабляет радиацию в 5-8 раз.

Радиоактивное заражение местности

Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается осколками деления, наведенной активностью и не прореагировавшей частью заряда.

Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной реакции - осколки деления ядер урана или плутония. Радиоактивные продукты ядерного взрыва, осевшие на поверхность земли, испускают гамма-лучи, бета- и альфа-частицы (радиоактивные излучения).

Радиоактивные частицы выпадают из облака и заражают местность, создавая радиоактивный след на расстояниях в десятки и сотни километров от центра взрыва. По степени опасности зараженную местность по следу облака ядерного взрыва делят на четыре зоны.


Зона А - умеренного заражения. Доза излучения до полного распада радиоактивных веществ на внешней границе зоны составляет 40 рад, на внутренней границе - 400 рад. Зона Б - сильного заражения - 400-1200 рад. Зона В - опасного заражения - 1200-4000 рад. Зона Г - чрезвычайно опасного заражения - 4000-7000 рад.

На зараженной местности люди подвергаются действию радиоактивных излучений, в результате чего у них может развиться лучевая болезнь. Не менее опасно попадание радиоактивных веществ внутрь организма, а также на кожу. Так, при попадании на кожу, особенно на слизистые оболочки полости рта, носа и глаз, даже малых количеств радиоактивных веществ могут наблюдаться радиоактивные поражения.

Вооружение и техника, зараженные РВ, представляют определенную опасность для личного состава, если обращаться, с ними без средств защиты. В целях исключения поражения личного состава от радиоактивности зараженной техники установлены допустимые уровни заражения продуктами ядерных взрывов, не приводящие к лучевому поражению. Если заражение выше допустимых норм, то необходимо удалять радиоактивную пыль с поверхностей, т. е. производить их дезактивацию.

Радиоактивное заражение, в отличие от других поражающих факторов, действует длительное время (часы, сутки, годы) и на больших площадях. Оно не имеет внешних признаков и обнаруживается только с помощью специальных дозиметрических приборов.

Электромагнитный импульс

Электромагнитные поля, сопровождающие ядерные взрывы, называют электромагнитным импульсом (ЭМИ).

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности земли.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Сейсмовзрывные волны в грунте

При воздушных и наземных ядерных взрывах в грунте образуются сейсмовзрывные волны, представляющие собой механические колебания грунта. Эти волны распространяются на большие расстояния от эпицентра взрыва, вызывают деформации грунта и являются существенным поражающим фактором для подземных, шахтных и котлованных сооружений.

Источником сейсмовзрывных волн при воздушном взрыве является воздушная ударная волна, действующая на поверхность земли. При наземном взрыве сейсмовзрывные волны образуются как в результате действия воздушной ударной волны, так и вследствие передачи энергии грунту непосредственно в центре взрыва.

Сейсмовзрывные волны формируют динамические нагрузки на конструкции, элементы строений и т. д. Сооружения и их конструкции совершают колебательные движения. Напряжения, возникающие в них, при достижении определенных значений приводить к разрушениям элементов конструкций. Колебания, передаваемые от строительных конструкций на размещаемые в сооружениях вооружение, военную технику и внутреннее оборудование, могут приводить к их повреждениям. Пораженным может оказаться и личный состав в результате действия на него перегрузок и акустических волн, вызываемых колебательным движением элементов сооружений.

Ядерный взрыв сопровождается выделением огромного количества энергии, поэтому по разрушающему и поражающему действию он в сотни и тысячи раз может превосходить взрывы самых крупных авиационных бомб, снаряжённых обычными взрывчатыми веществами.

Поражение войск ядерным оружием происходит на больших площадях и носит массовый характер. Ядерное оружие позволяет в короткие сроки наносить противнику крупные потери в живой силе и боевой технике, разрушать сооружения и другие объекты.

Поражающими факторами ядерного взрыва являются:

  1. Ударная волна;
  2. Световое излучение;
  3. Проникающая радиация;
  4. Электромагнитный импульс (ЭМИ);
  5. Радиоактивное заражение.

Ударная волна ядерного взрыва – один из его основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно: воздушной, подводной, сейсмовзрывной.

Воздушной ударной волной называют область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражения людям, разрушать различные сооружения, вооружение и военную технику и другие объекты на значительных расстояниях от места взрыва.

При наземном взрыве фронт ударной волны представляет собой полусферу, при воздушном взрыве в первый момент – сферу, затем полусферу. Кроме того, при наземном и воздушном взрыве часть энергии расходуется на образование сейсмовзрывных волн в грунте, а также на испарение грунта и образование воронки.

Для объектов большой прочности, например, убежищ тяжелого типа, радиус зоны разрушающего действия ударной волны будет наибольшим при наземном взрыве. Для таких малопрочных объектов, как жилые здания, наибольшим радиус разрушения будет при воздушном взрыве.

Поражение людей воздушной ударной волной может возникать в результате непосредственного и косвенного воздействия (летящими обломками сооружений, падающими деревьями, осколками стекла, камнями грунтом).

В зоне, где избыточное давление во фронте ударной волны превышает 1 кгс/см 2 , имеют место крайне тяжелые и смертельные поражения открыто расположенного личного состава, в зоне с давлением 0,6…1 кгс/см 2 – тяжелые поражения, при 0,4…0,5 кгс/см 2 – поражения средней тяжести и при 0,2…0,4 кгс/см 2 – легкие поражения.

Радиусы зон поражения личного состава в положении лежа в значительно меньше, чем в положении стоя. При расположении людей в траншеях, щелях радиусы зон поражения уменьшаются примерно в 1,5 — 2 раза.

Лучшими защитными свойствами обладают закрытые помещения подземного и котлованного типа (блиндажи, убежища), уменьшая радиус поражения ударной волной не менее, чем в 3 – 5 раз.

Таким образом, надежной защитой личного состава от ударной волны являются инженерные сооружения.

Ударная волна выводит из строя и вооружение. Так, слабые повреждения ЗУР наблюдаются при избыточном давлении ударной волны 0,25 – 0,3 кгс/см 2 . При слабых повреждениях у ракет происходит местное обжатие корпуса, могут выйти из строя отдельные приборы и агрегаты. К примеру, при взрыве боеприпаса мощностью 1 Мт ракеты выходят из строя на расстоянии 5…6 км, автомобили и подобная им техника – 4…5 км.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение оптического диапазона, включающее ультрафиолетовую (0,01 — 0,38 мк), видимую (0,38 — 0,77 мк) и инфракрасную (0,77-340 мк) области спектра.

Источником светового излучения является светящаяся область ядерного взрыва, температура которой вначале достигает нескольких десятков миллионов градусов, а затем остывает и в своем развитии проходит три фазы: начальную, первую и вторую.

В зависимости от мощности взрыва длительность начальной фазы светящейся области составляет доли миллисекунды, первой – от нескольких миллисекунд до десятков и сотен миллисекунд, а второй – от десятых долей секунды до десятков секунд. За время существования светящейся области температура внутри ее изменяется от миллионов до нескольких тысяч градусов. Основная доля энергии светового излучения (до 90%) приходится на вторую фазу. Время существования светящейся области возрастает с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра (до 1 кт) свечение продолжается десятые доли секунды; малого (от 1 до 10 кт) – 1 … 2 с; среднего (от 10 до 100 кт) – 2…5 с; крупного (от 100 кт до 1 Мт) – 5 … 10 с; сверхкрупного (свыше 1 Мт) – несколько десятков секунд. Размеры светящейся области также возрастают с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра максимальный диаметр светящейся области составляет – 20 … 200 м, малого – 200 … 500, среднего – 500 … 1000 м, крупного – 1000 … 2000 м и сверхкрупного – несколько километров.

Основным параметром, определяющим поражающую способность светового излучения ядерного взрыва, является световой импульс.

Световой импульс – количество энергии светового излучения, падающей за все время излучения на единицу площади неподвижной неэкранированной поверхности, расположенной перпендикулярно к направлению прямого излучения, без учета отраженного излучения. Световой импульс измеряется в джоулях на квадратный метр (Дж/м 2) или в калориях на квадратный сантиметр (кал/см 2); 1 кал/см 2 4,2*10 4 Дж/м 2 .

Световой импульс уменьшается с увеличением расстояния до эпицентра взрыва и зависит от вида взрыва и состояния атмосферы.

Поражение людей световым излучением выражается в появлении ожогов различных степеней открытых и защищенных обмундированием участков кожи, а также в поражении глаз. Например, при взрыве мощностью 1 Мт (U = 9 кал/см 2) поражаются открытые участки кожи человека, вызывая ожог 2-ой степени.

Под воздействием светового излучения возможно возгорание различных материалов и возникновение пожаров. Световое излучение в значительной степени ослабляется облачностью, зданиями населенных пунктов, лесом. Однако, в последних случаях поражение личного состава может быть вызвано за счет образования обширных зон пожаров.

Надежной защитой от светового излучения личного состава и боевой техники являются подземные инженерные сооружения (блиндажи, убежища, перекрытые щели, котлованы, капониры).

Защита от светового излучения в подразделениях включает выполнение следующих мероприятий:

повышение коэффициента отражения светового излучения поверхностью объекта (применение материалов, красок, обмазок светлых тонов, различных металлических отражателей);

повышение стойкости и защитных свойств объектов к действию светового излучения (применение увлажнения, снежных обсыпок, использование огнестойких материалов, покрытие глиной и известью, пропиткой чехлов и тентов огнестойкими составами);

проведение противопожарных мероприятий (расчистка районов расположения личного состава и боевой техники от легко воспламеняющихся материалов, подготовка сил и средств для тушения пожаров);

использование индивидуальных средств защиты, таких как общевойсковой комплексный защитный костюм (ОКЗК), общевойсковой защитный комплект (ОЗК), импрегнированное обмундирование, защитные очки и т.п.

Таким образом, ударная волна и световое излучение ядерного взрыва являются его основными поражающими факторами. Своевременное и умелое использование простейших укрытий, рельефа местности, инженерных фортификационных сооружений, индивидуальных средств защиты, профилактических мероприятий позволит ослабить, а в ряде случаев исключить воздействие ударной волны и светового излучения на личный состав, вооружение и военную технику.

Проникающая радиация ядерного взрыва представляет собой поток γ- излучения и нейтронов. Нейтронное и γ-излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространяться в воздухе во все стороны на расстояния до 2,5 – 3 км. Проходя через биологическую ткань, γ -кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению заболевания – лучевой болезни. Схема распространения гамма-излучения ядерного взрыва показана на рисунке 1.

Рис. 1. Схема распространения гамма-излучения ядерного взрыва

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации характеризуется дозой излучения, т.е. количеством энергии ионизирующих излучений, поглощенной единицей массы облучаемой среды, измеряемой в радах (рад ).

Нейтроны и γ-излучение ядерного взрыва действуют на любой объект практически одновременно. Поэтому общее поражающее действие проникающей радиации определяется суммированием доз γ-излучения и нейтроно, где:

  • суммарная доза излучения, рад;
  • доза γ- излучения, рад;
  • доза нейтронов, рад (ноль у символов доз показывает, что они определяются перед защитной преградой).

Доза излучения зависит от типа ядерного заряда, мощности и вида взрыва, а также от расстояния до центра взрыва.

Проникающая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов деления сверхмалой и малой мощности. Для взрывов большой мощности радиус поражения проникающей радиацией значительно меньше радиусов поражения ударной волной и световым излучением. Особо важное значение проникающая радиация приобретает в случае взрывов нейтронных боеприпасов, когда основная доля дозы излучения образуется быстрыми нейтронами.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от полученной дозы излучения и времени, прошедшего после взрыва, что вызывает лучевую болезнь. В зависимости от полученной дозы излучения различают четыре степени лучевой болезни.

Лучевая болезнь I степени (легкая) возникает при суммарной дозе излучения 150 – 250 рад. Скрытый период продолжается 2 – 3 недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание лейкоцитов и тромбоцитов. Лучевая болезнь I степени излечивается в течение 1,5 – 2 месяцев в стационаре.

Лучевая болезнь II степени (средняя) возникает при суммарной дозе излучения 250 – 400 рад. Скрытый период длится около 2 – 3 недель, затем признаки заболевания выражаются более ярко: наблюдается выпадение волос, меняется состав крови. При активном лечении наступает выздоровление через 2 — 2,5 месяца.

Лучевая болезнь III степени (тяжелая) наступает при дозе излучения 400 – 700 рад. Скрытый период составляет от несколько часов до 3 недель.

Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6 – 8 месяцев, но остаточные явления наблюдаются значительно дольше.

Лучевая болезнь IV степени (крайне тяжелая) наступает при дозе излучения свыше 700 рад, которая является наиболее опасной. Смерть наступает через 5 – 12 дней, а при дозах, превышающих 5000 рад, личный состав утрачивает боеспособность через несколько минут.

Тяжесть поражения в известной мере зависит от состояния организма до облучения и его индивидуальных особенностей. Сильное переутомление, голодание, болезнь, травмы, ожоги повышают чувствительность организма к воздействию проникающей радиации. Сначала человек теряет физическую работоспособность, а затем – умственную.

При больших дозах излучения и потоках быстрых нейтронов утрачивают работоспособность комплектующие элементы систем радиоэлектроники. При дозах более 2000 рад стекла оптических приборов темнеют, окрашиваясь в фиолетово – бурый цвет, что снижает или полностью исключает возможность их использования для наблюдения. Дозы излучения 2 – 3 рад приводят в негодность фотоматериалы, находящиеся в светонепроницаемой упаковке.

Защитой от проникающей радиации служат различные материалы, ослабляющие γ-излучение и нейтроны. При решении вопросов защиты следует учитывать разницу в механизмах взаимодействия γ-излучения и нейтронов со средой, что определяет выбор защитных материалов. Излучение сильнее всего ослабляется тяжелыми материалами, имеющими высокую электронную плотность (свинец, сталь, бетон). Поток нейтронов лучше ослабляется легкими материалами, содержащими ядра легких элементов, например водорода (вода, полиэтилен).

В подвижных объектах для защиты от проникающей радиации необходима комбинированная защита, состоящая из легких водородосодержащих веществ и материалов с высокой плотностью. Средний танк, например, без специальных противорадиационных экранов имеет кратность ослабления проникающей радиации равную примерно 4, что недостаточно для обеспечения надежной защиты экипажа. Поэтому вопросы защиты личного состава должны решаться выполнением комплекса различных мероприятий.

Наибольшей кратностью ослабления от проникающей радиации обладают фортификационные сооружения (перекрытые траншеи – до 100, убежища – до 1500).

В качестве средств, ослабляющих действие ионизирующих излучений на организм человека, могут быть использованы различные противорадиационные препараты (радиопротекторы).

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

Основной причиной генерации ЭМИ длительностью менее 1с считают взаимодействие γ-квантов и нейтронов с газом во фронте ударной волны и вокруг него. Важное значение имеет также возникновение асимметрии в распределении пространственных электрических зарядов, связанных с особенностями распространения излучения и образования электронов.

При наземном или низком воздушном взрыве γ-кванты, испускаемые из зоны протекания ядерных реакций, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля, которые и представляют собой ЭМИ.

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (Н > 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20 – 40 км от поверхности земли. ЭМИ в зоне такого взрыва возникает за счет быстрых электронов, которые образуются в результате взаимодействия квантов ядерного взрыва с материалом оболочки боеприпаса и рентгеновского излучения с атомами окружающего разреженного воздушного пространства.

Испускаемое из зоны взрыва излучение в направлении поверхности земли начинает поглощаться в более плотных слоях атмосферы на высотах 20 – 40 км, выбивая из атомов воздуха быстрые электроны. В результате разделения и перемещения положительных и отрицательных зарядов в этой области и в зоне взрыва, а также при взаимодействии зарядов с геомагнитным полем земли возникает электромагнитное излучение, которое достигает поверхности земли в зоне радиусом до нескольких сот километров. Продолжительность ЭМИ – несколько десятых долей секунды.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда амплитуда ЭМИ не слишком большая, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Кроме того, высотный взрыв способен создать помехи в работе средств связи на очень больших площадях.

Защита от ЭМИ достигается экранированием как линий энергоснабжения и управления, так и собственно аппаратуры, а также созданием такой элементной базы радиотехнических средств, которая устойчива к воздействию ЭМИ. Все наружные линии, например, должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками. Для защиты чувствительного электронного оборудования целесообразно использовать разрядники с небольшим порогом зажигания. Важное значение имеют правильная эксплуатация линий, контроль исправности средств защиты, а также организация обслуживания линий в процессе эксплуатации.

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва при его перемещении под воздействием ветра.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких лет и десятков лет после взрыва.

Наиболее сильное заражение местности происходит от наземных ядерных взрывов, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть измерена какими – либо физическими или химическими методами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30 – 50 мкм, принято называть ближним следом заражения. На больших расстояниях – дальний след – небольшое заражение местности, которое в течение длительного времени не влияет на боеспособность личного состава. Схема формирования следа радиоактивного облака наземного ядерного взрыва представлена на рисунке 2.

Рис. 2. Схема формирования следа радиоактивного облака наземного ядерного взрыва

Источниками радиоактивного заражения при ядерном взрыве являются:

  • продукты деления (осколки деления) ядерных взрывчатых веществ;
  • радиоактивные изотопы (радионуклиды), образующиеся в грунте и др. материалах под воздействием нейтронов – наведенная активность;
  • не разделившаяся часть ядерного заряда.

При наземном ядерном взрыве светящаяся область касается поверхности земли и образуется воронка выброса. Значительное количество грунта, попавшего в светящуюся область, плавится, испаряется и перемешивается с радиоактивными веществами.

По мере остывания светящейся области и ее подъема пары конденсируются, образуя радиоактивные частицы разных размеров. Сильный прогрев грунта и приземного слоя воздуха способствует образованию в районе взрыва восходящих потоков воздуха, которые формируют пылевой столб («ножку» облака). Когда плотность воздуха в облаке взрыва станет равной плотности окружающего воздуха, подъем облака прекращается. При этом, в среднем за 7 – 10 мин. облако достигает максимальной высоты подъема, которую иногда называют высотой стабилизации облака.

Границы зон радиоактивного заражения с разной степенью опасности для личного состава можно характеризовать как мощностью дозы излучения (уровнем радиации) на определенное время после взрыва, так и дозой до полного распада радиоактивных веществ.

По степени опасности зараженную местность по следу облака взрыва принято делить на 4 зоны.

Зона А (умеренного заражения), площадь которой составляет 70 – 80% площади всего следа.

Зона Б (сильного заражения). Дозы излучения на внешней границе этой зоны Д внешн = 400 рад, а на внутренней — Д внутр. = 1200 рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

Зона В (опасного заражения). Дозы излучения на ее внешней границе Д внешн = 1200 рад, а на внутренней — Д внутр = 4000 рад. Эта зона занимает примерно 8 – 10% площади следа облака взрыва.

Зона Г (чрезвычайно опасного заражения). Дозы излучения на ее внешней границе более 4000 рад.

На рисунке 3 показана схема нанесения прогнозируемых зон заражения при одиночном наземном ядерном взрыве. Синим цветом наносится зона Г, зеленым – Б, коричневым – В, черным – Г.

Рис. 3. Схема нанесения прогнозируемых зон заражения при одиночном ядерном взрыве

Потери людей, вызванные действием поражающих факторов ядерного взрыва, принято делить на безвозвратные исанитарные.

К безвозвратным потерям относят погибших до оказания медицинской помощи, а к санитарным – пораженных, поступивших для лечения в медицинские подразделения и учреждения.

2. Поражающие факторы ядерного взрыва

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Ударная волна

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне вполне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 с ударная волна проходит около 1000 м, за 5 с - 2000 м, за 8 с - около 3000 м.

Поражающее действия ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери населения могут оказаться большими, чем от непосредственного действия ударной волны. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые.

Легкие поражения наступают при избыточном давлении 20-40 кПа (0,2-0,4 кгс/см2) и характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Средние поражения возникают при избыточном давлении 40-60 кПа (0,4-0,6 кгс/см2). При этом могут возникнуть вывихи конечностей, контузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей. Тяжелые поражения возможны при избыточном давлении ударной волны 60-100 кПа (0,6-1,0 кгс/см2) и характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей. Крайне тяжелые травмы могут привести к смертельному исходу при избыточном давлении более 100 кПа (1,0 кгс/см2).

Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км, крайне тяжелые - до 1,0 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. В случае отсутствия убежищ используются естественные укрытия и рельеф местности.

При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются слабым, средним, сильным и полным разрушениями.

Слабое разрушение сопровождается разрушением оконных и дверных заполнений и легких перегородок, частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью.

Среднее разрушение проявляется в разрушении крыш, внутренних перегородок, окон, обрушением чердачных перекрытий, трещинами в стенах. Восстановление зданий возможно при проведении капитальных ремонтных работ.

Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, появлением трещин в стенах. Использование зданий становится невозможным. Ремонт и восстановление зданий становится нецелесообразным.

При полном разрушении обрушаются все основные элементы здания, включая и несущие конструкции. Использовать такие здания невозможно, и, чтобы они не представляли опасность, их полностью обрушают.

Световое излучение

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца. Максимальная температура светящейся области находится в пределах 8000-10000 оС.

Поражающее действие светового излучения характеризуется световым импульсом. Световым импульсом называется отношение количества световой энергии к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. Единицей светового импульса является джоуль на квадратный метр (Дж/м2) или калория на квадратный сантиметр (кал/см2).

Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может привести к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от ожогов, вызываемых огнем или кипятком. Они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности. В зависимости от воспринятой величины светового импульса ожоги делятся на три степени.

Ожоги первой степени возникают при световом импульсе 2-4 кал/см2 и проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени при световом импульсе 4-10 кал/см2 на коже появляются пузыри. При ожогах третьей степени при световом импульсе 10-15 кал/см2 наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1 МгТ.

Защитой от светового излучения могут служить различные предметы, создающие тень, но лучшие результаты достигаются при использовании убежищ и укрытий.

Проникающая радиация

Проникающая радиация представляет собой поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва.

С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывов действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма квантов землей и водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением.

Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее), наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (Р). Дозе радиации 1Р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

В зависимости от дозы излучения различают четыре степени лучевой болезни. Первая (легкая) возникает при получении человеком дозы от 100 до 200 Р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 Р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстро, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300-500 Р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу. Доза облучения свыше 500 Р вызывает лучевую болезнь четвертой степени и для человека обычно считается летальной.

Защитой от проникающей радиации служат различные материалы, ослабляющие поток гамма- и нейтронного излучений. Степень ослабления проникающей радиации зависит от свойств материалов и толщины защитного слоя. Ослабление интенсивности гамма- и нейтронного излучений характеризуется слоем половинного ослабления, который зависит от плотности материалов.

Слой половинного ослабления - это слой вещества, при прохождении которого интенсивность гамма-лучей или нейтронов уменьшается в два раза.

Радиоактивное заражение

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235, U-238) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами (радионуклидами), образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики - от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину несколько десятков километров.

Степень радиоактивного заражения местности характеризуется уровнем радиации на определенное время после взрыва. Уровнем радиации называют мощность экспозиционной дозы (Р/ч) на высоте 0,7-1 м над зараженной поверхностью.

Возникающие зоны радиоактивного заражения по степени опасности принято делить на следующие четыре зоны.

Зона Г - чрезвычайно опасного заражения. Ее площадь составляет 2-3% площади следа облака взрыва. Уровень радиации составляет 800 Р/ч.

Зона В - опасного заражения. Она занимает примерно 8-10% площади следа облака взрыва; уровень радиации 240 Р/ч.

Зона Б - сильного заражения, на долю которой приходится примерно 10 % площади радиоактивного следа, уровень радиации 80 Р/ч.

Зона А - умеренного заражения площадью 70-80 % от площади всего следа взрыва. Уровень радиации на внешней границе зоны через 1 час после взрыва составляет 8 Р/ч.

Поражения в результате внутреннего облучения появляются вследствие попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

Электромагнитный импульс

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, технике, на земле или на других объектах. Действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной аппаратуре, где под действием ЭМИ наводятся электрические токи и напряжения, которые могут вызвать пробой электроизоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов и других элементов радиотехнических устройств. Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Сильные электромагнитные поля могут повредить электрические цепи и нарушить работу неэкранированного электротехнического оборудования.

Высотный взрыв способен создать помехи в работе средств связи на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры.

3 Очаг ядерного поражения

Очагом ядерного поражения называется территория, на которой под воздействием поражающих факторов ядерного взрыва возникают разрушения зданий и сооружений, пожары, радиоактивное заражение местности и поражения населения. Одновременное воздействие ударной волны, светового излучения и проникающей радиации в значительной мере обусловливает комбинированный характер поражающего действия взрыва ядерного боеприпаса на людей, военную технику и сооружения. При комбинированном поражении людей травмы и контузии от воздействия ударной волны могут сочетаться с ожогами от светового излучения с одновременным возгоранием от светового излучения. Радиоэлектронная аппаратура и приборы, кроме того, могут потерять работоспособность в результате воздействия электромагнитного импульса (ЭМИ).

Размеры очага тем больше, чем мощнее ядерный взрыв. Характер разрушений в очаге зависит также от прочности конструкций зданий и сооружений, их этажности и плотности застройки.


Световых затворов и др.). Проникающая радиация ядерного взрыва. Проникающая радиация ядерного взрыва представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва. Поражающее действие на организм человека оказывают только свободные нейтроны, т.е. те, которые не входят в состав ядер атомов. При ядерном взрыве они образуются в процессе цепной реакции...

Поражающие факторы ядерного оружия, и их краткая характеристика.

Особенности поражающего действия ядерного взрыва и главный поражающий фактор определяются не только типом ядерного боеприпаса, но и мощностью взрыва, видом взрыва и характером объекта поражения (цели). Все эти факторы учитываются при оценке эффективности ядерного удара и разработке содержания мероприятий по защите войск и объектов от ядерного оружия.

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии и поэтому в зоне протекания ядерных реакций температура повышается до нескольких миллионов градусов, а максимальное давление достигает миллиардов атмосфер. Высокие температура и давление вызывают мощную ударную волну.

Наряду с ударной волной и световым излучением взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и g-квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха.

Неравномерное движение электрических зарядов в воздухе, возникающих под воздействием ионизированных излучений, приводит к образованию электромагнитного импульса (ЭМИ).

Поражающие факторы ядерного взрыва:

1) ударная волна;

2) световое излучение;

3) проникающая радиация;

4) радиоактивное излучение;

5) электромагнитный импульс (ЭМИ).

1) Ударная волна ядерного взрыва – один из основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – воздухе, воде или грунте, - ее называют соответственно воздушной волной, ударной волной (в воде) и сейсмовзрывной волной (в грунте).

Ударная волна представляет собой область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражение людям, разрушать различные сооружения, вооружение, военную технику и другие объекты на значительных расстояниях от места взрыва.

Основными параметрами ударной волны являются избыточное давление во фронте волны, время действия и ее скоростной напор.

2) Под световым излучением ядерного взрыва понимается электромагнитное излучение оптического диапазона в видимой, ультрафиолетовой и инфракрасной области спектра.

Источником светового излучения является святящаяся область взрыва, состоящего из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и частиц грунта, поднятых взрывом с земной поверхности. Форма светящейся области при воздушном взрыве имеет вид шара; при наземных взрывах она близка к полусфере; при низких воздушных взрывах шаровая форма деформируется отраженной от земли ударной волной. Размеры светящейся области пропорциональны мощности взрыва.

Световое излучение при ядерном взрыве делится всего несколько секунд. Длительность свечения зависит от мощности ядерного взрыва. Чем больше мощность взрыва, тем длительнее свечение. Температура светящейся области от 2000 до 3000 0 С. Для сравнения укажем, что температура поверхностных слоев Солнца составляет 6000 0 С.

Основным параметром, характеризующим световое излучение на различных расстояниях от центра ядерного взрыва, является световой импульс. Световым импульсом называется количество световой энергии, падающей на единицу площади поверхности, перпендикулярной направлению излучения за все время свечения источника. Световой импульс измеряется в калориях на 1 квадратный сантиметр (кал/см 2).

Световое излучение в первую очередь воздействует на открытые участки тела – кисти рук, лицо, шею, а также глаза, вызывая ожоги.

Различают четыре степени ожогов:

Ожог первой степени – представляет собой поверхностное поражение кожи, внешне проявляющееся в ее покраснении;

Ожог второй степени – характеризуется образованием пузырей;

Ожог третьей степени – вызывает омертвение глубоких слоев кожи;

Ожог четвертой степени – обугливается кожа и подкожная клетчатка, а иногда и более глубокие ткани.

3) Проникающая радиация представляет собой поток g-излучения и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва.

g-излучение и нейтронное излучение различны по своим физическим свойствам, могут распространяться в воздухе во все стороны на расстояние от 2,5 до 3 км.

Продолжительность действия проникающей радиации составляет всего несколько секунд, но тем не менее она способна нанести личному составу тяжелые поражения, особенно если он открыто расположен.

g-лучи и нейтроны, распространяясь в любой среде, ионизируют ее атомы. В результате ионизации атомов, входящих в состав живых тканей, нарушаются различные жизненные процессы в организме, что приводит к лучевой болезни.

Кроме того, проникающая радиация может вызвать потемнение стекла, засвечивание светочувствительных фотоматериалов и выводить из строя радиоэлектронную аппаратуру, особенно содержащую полупроводниковые элементы.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от дозы излучения и времени, прошедшего после взрыва.

Поражающее действие проникающей радиации характеризуется дозой излучения.

Различают экспозиционную дозу и поглощённую дозу.

Экспозиционная доза ранее измерялась внесистемными единицами – рентгенами (Р). Один рентген – это такая доза рентгеновского или g-излучения, которая создаёт в одном кубическом сантиметре воздуха 2,1 10 9 пар ионов. В новой системе единиц СИ экспозиционная доза измеряется в Кулонах на килограмм (1 Р=2,58 10 -4 Кл/кг).

Поглощённая доза измеряется в радианах (1 Рад= 0,01 Дж/кг= 100 эрг/г поглощённой энергии в ткани). Единицей измерения поглощённой дозы в системе СИ является Грей (1 Гр=1 Дж/кг=100 Рад). Поглощенная доза более точно определяет воздействие ионизирующих излучений на биологические ткани организма, имеющие различный атомный состав и плотность.

В зависимости от дозы излучений различают четыре степени лучевой болезни:

1) Лучевая болезнь первой степени (легкая) возникает при суммарной дозе излучения 150-250 Рад. Скрытый период продолжается 2-3 недели, после чего появляются недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков. Лучевая болезнь первой степени излечима.

2) Лучевая болезнь второй степени (средняя) возникает при суммарной дозе излучения 250-400 Рад. Скрытый период длится около недели. Признаки заболевания выражены более ярко. При активном лечении выздоровление наступает через 1,5-2 месяца.

3) Лучевая болезнь третьей степени (тяжелая), наступает при дозе излучения 400-700 Рад. Скрытый период составляет несколько часов. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6-8 месяцев.

4) Лучевая болезнь четвертой степени (крайне тяжелая), наступает при дозе облучения свыше 700 Рад, которая является наиболее опасной. При дозах, превышающих 500 Рад личный состав утрачивает боеспособность через несколько минут.

4) Радиоактивное заражение местности , приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва.

Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной радиации – осколки деления ядер урана и плутония. Распад осколков сопровождается испусканием гамма-лучей и бета-частиц.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него.

Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака. В свою очередь в районе взрыва различают наветренную и подветренную стороны.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны:

1. зона А – умеренного заражения. Дозы излучения до полного распада радиоактивных веществ на внешней границе зоны Д ¥ =40 Рад, на внутренней границе Д ¥ =400 Рад. Ее площадь составляет 70-80% площади всего следа.

2. зона Б – сильного заражения. Дозы излучения на границах Д ¥ =400 Рад и Д ¥ =1200 Рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

3. зона В – опасного заражения. Дозы излучения на ее внешней границе за период полного распада радиоактивных веществ Д ¥ =1200 Рад, а на внутренней границе Д ¥ =4000 Рад. Эта зона занимает примерно 8-10% площади следа облака взрыва.

4. зона Г – чрезвычайно опасного заражения. Дозы излучения на ее внешней границе за период полного распада радиоактивных веществ Д ¥ =4000 Рад, а в середине зоны Д ¥ =7000 Рад.

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляют соответственно 8; 80; 240 и 800 Рад/ч, а через 10 часов – 0,5; 5; 15 и 50 Рад/ч. Со временем уровни радиации на местности снижаются ориентировочно в 10 раз через отрезки времени, кратные 7. Например, через 7 часов после взрыва мощность дозы уменьшается в 10 раз, а через 49 часов – в 100 раз.

5) Электромагнитный импульс (ЭМИ). Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

При наземном или низком воздушном взрыве g-кванты, испускаемые из зоны протекания ядерных взрывов, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения g-квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля ЭМИ.

При наземном и низком воздушном взрыве поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (высота более 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности.

Поражающее действие ЭМИ проявляется прежде всего по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении, военной технике и других объектах.

Если ядерные взрывы произойдут вблизи линий энергоснабжения, связи, имеющих большую протяженность, то наведенные в них напряжения могут распространяться по проводам на многие километры и вызывать повреждение аппаратуры и поражение личного состава, находящегося на безопасном удалении по отношению к другим поражающим факторам ядерного взрыва.

ЭМИ представляет опасность и при наличии прочных сооружений (укрытых командных пунктов, ракетных стартовых комплексов), которые рассчитаны на устойчивость к воздействию ударных волн наземного ядерного взрыва, произведенного на расстоянии несколько сот метров. Сильные электромагнитные поля могут повредить электрические цепи и нарушить работу неэкранированного электронного и электротехнического оборудования, так что потребуется время для его восстановления.

Высотный взрыв способен создать помехи в работе средств связи на очень больших площадях.

Защита от ядерного оружия является одним из важнейших видов боевого обеспечения. Она организуется и осуществляется с целью не допустить поражение войск ядерным оружием, сохранить их боеспособность и обеспечить успешное выполнение поставленной задачи. Это достигается:

Ведением разведки средств ядерного нападения;

Использованием средств индивидуальной защиты, защитных свойств техники, местности, инженерных сооружений;

Искусными действиями на заражённой местности;

Проведением контроля радиоактивного облучения, санитарно- гигиенических мероприятий;

Своевременной ликвидацией последствий применения противником оружия массового поражения;

Основные способы защиты от ядерного оружия:

Разведка и уничтожение пусковых установок с ядерными боеголовками;

Радиационная разведка районов взрыва ядерных боеприпасов;

Оповещение войск об опасности ядерного нападения противника;

Рассредоточение и маскировка войск;

Инженерное оборудование районов расположения войск;

Ликвидация последствий применений ядерного оружия.