Влияние холодных течений на климат. Влияние течений на режим океанов и морей и на климат земли

Многие знают о Гольфстриме, который, неся огромные массы воды из экваториальных широт в полярные, буквально согревает север Западной Европы и Скандинавию. Но мало кто знает, что существуют и другие теплые и холодные течения Атлантического океана. Как они влияют на климат прибрежных районов? Об этом расскажет наша статья. На самом деле течений в Атлантике очень много. Кратко перечислим их для общего развития. Это Западно-Гренландское, Ангольское, Антильское, Бенгельское, Гвинейское, Ломоносова, Бразильское, Гвианское, Азорское, Гольфстрим, Ирмингера, Канарское, Восточно-Исландское, Лабрадорское, Португальское, Североатлантическое, Флоридское, Фолклендское, Североэкваториальное, Южное Пассатное, а еще Экваториальное противотечение. Не все они оказывают на климат большое влияние. Некоторые из них вообще являются частью или фрагментами основных, более крупных течений. Вот о них и пойдет речь в нашей статье.

Почему образуются течения

В Мировом океане постоянно идет циркуляция больших невидимых «рек без берегов». Вода вообще очень динамичная стихия. Но с реками все понятно: они стекают от истока к устью из-за разницы в высотах между этими пунктами. Но что заставляет двигаться огромные массы воды в рамках океана? Из множества причин главными являются две: пассатные ветра и изменения атмосферного давления. Из-за этого течения делятся на дрейфовые и бароградиентные. Первые образуются пассатами - постоянно дующими в одном направлении ветрами. Таких течений большинство. Могучие реки выносят в моря большое количество воды, отличной от морской по плотности и температуре. Такие течения называются стоковыми, гравитационными и фрикционными. Следует принять во внимание и большую протяженность с севера на юг, которой обладает Атлантический океан. Течения в этой акватории поэтому имеют больше меридиональную, чем широтную направленность.

Что такое пассаты

Ветра - вот главная причина перемещения огромных масс воды в Мировом океане. Но что такое пассаты? Ответ следует искать в экваториальных областях. Там воздух прогревается больше, чем в других широтах. Он поднимается вверх и по верхним слоям тропосферы растекается по направлению к двум полюсам. Но уже на широте 30 градусов, основательно охладившись, он опускается вниз. Таким образом создается круговорот воздушных масс. В области экватора возникает зона низкого давления, а в тропических широтах - высокого. И тут проявляет себя вращение Земли вокруг оси. Если бы не оно, пассаты дули бы от тропиков обеих полушарий к экватору. Но, поскольку наша планета вращается, ветра отклоняются, приобретая западное направление. Так пассаты формируют основные течения Атлантического океана. В Северном полушарии они движутся по часовой стрелке, а в Южном - против. Это происходит потому, что в первом случае пассаты дуют с северо-востока, а во втором - с юго-востока.

Воздействие на климат

Исходя из того, что основные течения зарождаются в экваториальных и тропических областях, разумно было бы предположить, что все они являются теплыми. Но это происходит далеко не всегда. Теплое течение в Атлантическом океане, дойдя до полярных широт, не угасает, а, сделав плавный круг, обращается вспять, но уже изрядно охладившись. Это можно наблюдать на примере Гольфстрима. Он несет теплые массы воды из Саргассова моря на север Европы. Потом, под действием вращения Земли, он отклоняется на запад. Под именем Лабрадорского течения он спускается вдоль берега Североамериканского континента на юг, охлаждая приморские области Канады. Следует сказать, что теплыми и холодными эти массы воды называют условно - относительно температуры окружающей среды. Например, в Нордкапском течении зимой температура всего +2 °С, а летом - максимально +8 °С. Но его называют теплым, поскольку вода в Баренцевом море еще холоднее.

Основные течения Атлантики в Северном полушарии

Здесь, конечно же, нельзя не упомянуть Гольфстрим. Но и другие проходящие через Атлантический океан течения оказывают на климат близлежащих территорий немаловажное влияние. У Зеленого Мыса (Африка) рождается северо-восточный пассат. Он гонит огромные прогревшиеся массы воды на запад. Пересекая Атлантический океан, они соединяются с Антильским и Гвианским течениями. Эта усиленная струя движется к Карибскому морю. После этого воды устремляются на север. Это непрерывное движение по часовой стрелке называется теплым Североатлантическим течением. Край его у высоких широт неопределенный, размытый, а у экватора - более четкий.

Загадочное «Течение из Залива» (Golf-Stream)

Именно так называется течение Атлантическом океане, без которого Скандинавия и Исландия превратились бы, исходя из их близости к полюсу, в край вечных снегов. Раньше думали, что Гольфстрим рождается в Мексиканском заливе. Отсюда и название. На самом деле из Мексиканского залива вытекает лишь малая часть Гольфстрима. Основной поток поступает из Саргассова моря. В чем загадочность Гольфстрима? В том, что он, вопреки вращению Земли, течет не с запада на восток, а в обратном направлении. Его мощность превышает слив всех рек планеты. Скорость Гольфстрима внушительна - два с половиной метра в секунду на поверхности. Течение прослеживается и на глубине 800 метров. А ширина потока составляет 110-120 километров. Из-за большой скорости течения, вода из экваториальных широт не успевает охладиться. Поверхностный слой имеет температуру +25 градусов, что, конечно играет первостепенную роль в формировании климата Западной Европы. Загадка Гольфстрима состоит еще и в том, что он нигде не омывает материки. Между ним и берегом всегда имеется полоса более холодной воды.

Атлантический океан: течения Южного полушария

От африканского континента к американскому пассат гонит струю, которая из-за низкого давления в экваториальной области начинает отклоняться к югу. Так начинается аналогичный северному круговорот. Однако Южное Пассатное течение движется против часовой стрелки. Оно также проходит через весь Атлантический океан. Течения Гвианское, Бразильское (теплые), Фолклендское, Бенгельское (холодные) являются частью этого круговорота.

Циркуляция вод Мирового океана определяет обмен количеством вещества, тепла и механической энергии между океаном и атмосферой, поверхностными и глубинными, тропическими и полярными водами. Морские течения переносят большие массы воды из одних областей в другие, часто весьма в отдаленные районы. Течения нарушают широтную зональность в распределении температуры. Во всех трех океанах - Атлантическом, Индийском и Тихом - под влиянием течений возникают температурные аномалии: положительные аномалии связаны с переносом теплых вод от экватора в более высокие широты течениями, имеющими близкое к меридиональному направление; отрицательные аномалии вызваны противоположно направленными (от высоких широт к экватору) холодными течениями. Отрицательные аномалии температуры усиливаются, кроме того, подъемом глубинных вод у западных берегов континентов, вызванным сгонами вод пассатными ветрами.

Влияние течений сказывается не только на величине и распределении средних годовых значений температуры, но и на ее годовых амплитудах. Это особенно отчетливо проявляется в районах соприкосновения теплых и холодных течений, там, где границы их смещаются в течение года, как, например, в Атлантическом океане в районе соприкосновения Гольфстрима и Лабрадорского течений, в Тихом океане в районе соприкосновения течений Куросио и Курильского (Ойясио).

Течения оказывают влияние на распределение и других океанологических характеристик: солености, содержания кислорода, биогенных веществ, цвета, прозрачности и др. Распределение этих характеристик оказывает огромное влияние на развитие биологических процессов, растительный и животный мир морей и океанов. Изменчивость морских течений во времени и пространстве, смещение их фронтальных зон влияют на биологическую продуктивность океанов и морей.

Большое влияние оказывают течения на климат Земли. Например, в тропических областях, где преобладает восточный перенос, на западных берегах океанов наблюдаются значительные облачность, осадки, влажность, а у восточных, где ветры дуют с материков, - относительно сухой климат. Течения существенно влияют на распределение давления и циркуляцию атмосферы. Над осями теплых течений, как, например, Гольфстрим, Северо-Атлантическое, Куросио, Северо-Тихоокеанское, движутся серии циклонов, которые определяют погодные условия прибрежных районов материков. Теплое Северо-Атлантическое течение благоприятствует усилению исландского минимума давления, а, следовательно, и интенсивной циклонической деятельности в Северной Атлантике, Северном и Балтийском морях. Аналогично влияние Куросио на область алеутского минимума давления в северо-восточном районе Тихого океана. С теплыми течениями, проникающими в высокие широты, связана циклоническая циркуляция атмосферы, что способствует выпадению обильных атмосферных осадков. Над холодными течениями, напротив, развиваются отроги высокого давления, что вызывает уменьшение количества осадков. В районах встречи теплых и холодных течений часто отмечаются туманы и сплошная облачность.

Там, где теплые течения глубоко проникают в умеренные и приполярные широты, их влияние на климат сказывается особенно ярко. Хорошо известно смягчающее влияние Гольфстрима, Северо-Атлантического течения и его ветвей на климат Европы, течения Куросио -- на климатические условия северной части Тихого океана. Следует отметить большее значение в этом отношении Северо-Атлантического течения, чем Куросио, так как Северо-Атлантическое течение проникает почти на 40° севернее Куросио.

Резкие различия в климате создаются в том случае, если берега континентов или океанов омываются холодными и теплыми течениями. Так, например, восточное побережье Канады находится под влиянием холодного Лабрадорского течения, западное же побережье Европы омывается теплыми водами Северо-Атлантического течения. В результате в зоне между 55 и 70° с. ш. продолжительность безморозного периода на побережье Канады менее 60 дней, на европейском - 150-210 дней. Ярким примером воздействия течений на климатические и погодные условия служит Чилийско-Перуанское холодное течение, температура вод которого на 8-10° ниже окружающих вод Тихого океана. Над холодными водами этого течения воздушные массы, охлаждаясь, образуют сплошной покров слоисто-кучевых облаков, в результате на побережье Чили и Перу наблюдаются сплошная облачность и отсутствие осадков. Юго-восточный пассат создает в этом районе сгон, т. е. отход от берега поверхностных вод и подъем холодных глубинных вод. Когда побережье Перу находится только под воздействием этого холодного течения, этот период характеризуется отсутствием тропических штормов, дождей и гроз, а летом, особенно при усилении идущего навстречу теплого прибрежного течения Эль-Ниньо, здесь наблюдаются тропические штормы, разрушительной силы грозы, ливни, размывающие почву, жилые постройки, дамбы, насыпи.

Пульсации океанических течений, меандрирование и смещение их осей к югу или северу оказывают существенное влияние на климат прибрежных районов. Одновременными наблюдениями за распределением температуры в пределах таких крупномасштабных потоков, как Гольфстрим и Куросио, обнаружены извилины (меандры), имеющие волнообразный характер. Они напоминают меандры рек и в виде сгущения изотерм в оси главного потока перемещаются вместе с течением. Например, смещение оси Куросио к югу и северу достигает 350 миль между 34 и 40° с. ш. Положение фронтов Куросио - Ойясио, Гольфстрим - Лабрадорское и других течений испытывает полумесячные, месячные, полугодовые, годовые и многолетние колебания. В связи с этим наблюдаются колебания климатологических и метеорологических факторов на побережьях близлежащих материков. Погодные условия Японии связывают с колебаниями фронта Куросио, климатические условия Курильской гряды, о. Хоккайдо и севера о. Хонсю находятся под влиянием холодного течения Ойясио.

1

В статье сделана попытка прояснить вопрос о степени влияния океанских поверхностных течений на климатические показатели прилегающей суши. Определена ведущая роль океана во всей климатической системе Земли. Показано, что перенос тепла и влаги на сушу осуществляется со всей поверхности океана воздушными массами. Роль поверхностных океанских течений состоит в перемешивании теплых и холодных водных масс. Отмечено, что существенную роль в теплообмене между океаном и атмосферой играют долгопериодные волны Россби, представляющие собой преимущественно вертикальные водные потоки. Выявлено, что на прилегающую сушу океанские течения действуют локально – только при условии, что площадь суши очень незначительна и сопоставима с размерами самого океанского течения. В этом случае, в зависимости от соотношения характеристик самого течения и прилегающей суши, возможны небольшие температурные изменения (как в сторону повышения, так и в сторону понижения). Прямого влияния течений на количество осадков на суше установить не удалось.

поверхностные течения океана

взаимодействие океана и атмосферы

климатическая система

Гольфстрим

волны Россби

1. Анисимов М.В., Бышев В.И., Залесный В.Б., Мошонкин С.Н., Нейман В.Г., Романов Ю.А., Серых И.В. О междекадной изменчивости климатических характеристик океана и атмосферы в регионе Северной Атлантики // Современные проблемы дистанционного зондирования Земли из космоса. – 2012. – Т. 9, № 2. – С. 304–311.

2. Бондаренко А.Л., Борисов Е.В., Серых И.В., Суркова Г.В., Филиппов Ю.Г., Щевьев В.А. О влиянии волн Россби мирового океана на термодинамику его вод и атмосферы, погоду и климат Земли // Метеорология и гидрология. – 2011. – № 4. – С. 75–81.

3. Козина О.В., Дугин В.С. Климатообразующая роль океанических течений // Вестник Нижневартовского государственного университета. – 2013. – № 3. – С. 22–31.

4. Ростом Г.Р. Прописные географические истины против заблуждений // География в школе. – 2013. – № 5. – С. 57–60.

6. Gastineau G., Frankignoul C., D’Andrea F. Atmospheric response to the north Atlantic ocean variability on seasonal to decadal time scales // Climate Dynamics. – 2013. – V. 40, № 9–10. – P. 2311–2330.

В последние годы большой интерес вызывают вопросы, связанные с изменениями характеристик климатической системы Земли и их причинами. Надо отметить, что систематические наблюдения за изменениями климата начались сравнительно недавно. Ещё в 17 веке метеорология являлась частью науки физики. Именно учёным-физикам мы обязаны изобретением метеорологических приборов. Так, Галилеем с учениками были изобретены термометр, дождемер, барометр. Только со второй половины 17 века в Тоскане начинают проводиться инструментальные наблюдения. Тогда же разрабатываются и первые метеорологические теории. Но потребовалось почти два столетия на пути к систематическим метеорологическим наблюдениям. Они начинаются во второй половине 19 века в Европе, после изобретения телеграфа. В 1960-е гг. была проведена большая работа по созданию глобальной сети системы наблюдений за погодой. В последнее время все чаще в средствах массовой информации стали появляться сообщения об участившихся случаях необычно большого количества выпавших осадков в Европе, внезапного выпадения снега в тропических районах США и Северной Африки, цветении растений в пустыне Атакама. Долгое время не прекращаются споры о степени влияния Гольфстрима на климат Европы, о неблагоприятных последствиях при возможном прекращении функционирования этого теплого течения. К сожалению, материал подается таким образом, что создается впечатление, что мир перевернулся с ног на голову и в скором времени нужно ожидать какие-нибудь катастрофические климатические явления. Непростая фактическая картина подогревается разнообразными футуристическими предсказаниями о существенных изменениях привычного порядка вещей вроде значительного повышения уровня океана, значительного изменения угла наклона земной оси, сильного повышения температуры приземного слоя атмосферы.

В этой связи большое значение имеет выяснение причин климатических явлений, которые должны помочь адекватно воспринимать действительность и принимать разумные шаги по адаптации к предстоящим изменениям. В данной статье предпринята попытка определить степень влияния океанских поверхностных течений на климат прилегающей суши. Данный аспект выбран по причине того, что в науке о Земле влияние океанских течений на климат прилегающей суши немного переоценено. Из-за этого приуменьшается роль океана в формировании климата суши, искажается тем самым понимание поведения климатической системы Земли и отдаляется момент принятия адекватных мер по адаптации.

Существует мнение, что теплые морские течения приносят осадки и тепло на прилегающую сушу . Этому учат и в школах, и в вузе. Всесторонний анализ существующей картины говорит о неоднозначном проявлении этого постулата.

Океанскую воду можно рассматривать как накопитель солнечного тепла на Земле. Океанская вода поглощает 2/3 солнечной радиации. Теплоемкость океана настолько велика, что океанская вода (кроме поверхностного слоя) практически не меняет температуру по сезонам (в отличие от поверхности суши). Поэтому зимой на океанском побережье тепло, а летом - прохладно. Если же площадь суши (по сравнению с площадью океана) невелика (как в Европе), то отепляющее влияние океана может распространяться на значительные пространства. Выявлена тесная связь между потерей океаном тепла и потеплением атмосферного воздуха, и наоборот , что является логичным. Вместе с тем последние данные исследований говорят о более сложной картине тепловой динамики океана и атмосферы. Ведущую роль в потере океаном тепла ученые отдают такому пока еще малоизученному явлению, как североатлантическая осцилляция . Это периодические многодекадные изменения температуры океана, наблюдаемые в Северной Атлантике. С конца 1990-х гг. наблюдалась волна потепления океанской воды. В результате во многих районах северного полушария наблюдалось необычно большое количество ураганов. В настоящее время происходит переход к периоду понижения температуры поверхностных океанских вод. Это, скорее всего, уменьшит количество ураганов в северном полушарии.

Сезонное постоянство температуры всей массы океанской воды, особенно в районе тропиков, привело к формированию над поверхностью океана постоянных центров высокого давления, которые получили название центров действия атмосферы. Благодаря им существует общая циркуляция атмосферы, которая представляет собой запускающий механизм общей циркуляции океанских вод. Благодаря действию постоянных ветров возникают поверхностные течения Мирового океана. С их помощью осуществляется перемешивание океанской воды, а именно: поступление теплых вод в холодные области (с помощью «теплых» течений) и прохладных вод - в теплые (с помощью «холодных» течений). Необходимо помнить, что «теплыми» или «холодными» эти течения являются только по отношению к окружающим водам. Например, температура теплого Норвежского течения - + 3 °С, холодного Перуанского - + 22 °С. Системы океанских течений совпадают с системами постоянных ветров и представляют собой замкнутые кольца. Что касается течения Гольфстрим, то оно действительно приносит тепло в воды Северной Атлантики (но никак не в Европу) . В свою очередь, теплые воды Северной Атлантики передают свое тепло атмосферному воздуху, который вместе с западным переносом может распространиться в Европе.

Последние исследования по вопросу теплообмена между океанскими водами Северной Атлантики и атмосферой показали, что ведущую роль в изменении температуры океанских вод играют не столько течения, сколько волны Россби .

Тепловое взаимодействие океана и атмосферы происходит при разности температуры поверхностного слоя океанской воды и нижнего слоя воздуха атмосферы. Если температура воды поверхностного слоя океана больше температуры нижнего слоя атмосферы, то тепло от океана передаётся атмосфере. И наоборот, тепло передаётся океану, если воздух теплее океана. Если же температуры океана и атмосферы равны, то передача тепла между океаном и атмосферой не происходит. Чтобы существовал поток тепла между океаном и атмосферой, должны существовать механизмы, изменяющие температуру воздуха или воды в контактной зоне океан - атмосфера. Со стороны атмосферы это может быть ветер, со стороны океана - это механизмы движения воды в вертикальном направлении, обеспечивающие поступление воды с температурой отличной от температуры контактной зоны океана и атмосферы. Такими вертикальными движениями воды в океане являются долгопериодные волны Россби. Эти волны отличаются от известных нам ветровых волн по многим параметрам. Во-первых, они имеют большую длину (до нескольких сотен километров) и меньшую высоту. Об их присутствии в море исследователи обычно судят по изменению вектора течений частиц воды. Во-вторых, это долгопериодные инерционные волны, время жизни которых достигает десяти и более лет. Такие волны относят к градиентно-вихревым, которые обязаны своим существованием гироскопическим силам и определяются законом сохранения потенциального вихря.

Другими словами, ветер генерирует поток, который, в свою очередь, генерирует инерционные волны. Применительно к данному движению воды термин «волна» является условным. Частицы воды совершают преимущественно вращательные движения, причем как в горизонтальной, так и в вертикальной плоскости. В результате на поверхность поднимаются или теплые, или холодные водные массы. Одним из следствий этого явления является перемещение и искривление (меандрирование) систем течений .

Результаты исследования и их обсуждение

Течения как частный случай проявления свойств океанских вод при стечении определенных факторов могут оказывать существенное влияние на метеорологические показатели прибрежной суши. Например, теплое Восточно-Австралийское течение способствует еще большему насыщению влагой океанского воздуха, из которого при подъеме по Большому Водораздельному хребту на востоке Австралии выпадают осадки. Теплое Норвежское течение растапливает арктические льды в западной части Баренцева моря. Как следствие, зимой воды Мурманского порта не замерзают (тогда как в самом Мурманске зимой температура опускается ниже - 20 °С). Оно же обогревает узкую полосу западного побережья Норвегии (рис. 1, а). Благодаря теплому течению Куросио у восточных берегов Японских островов зимние температуры более высокие, чем в западной части (рис. 1, б).

Рис. 1. Распределение среднегодовых температур воздуха в Норвегии (а) и Японии (б); в град. Цельсия: красной стрелкой обозначены теплые течения

Холодные течения также могут воздействовать на метеорологические характеристики прибрежной суши. Так, холодные течения в тропиках у западных берегов Южной Америки, Африки и Австралии (соответственно - Перуанское, Бенгельское, Западно-Австралийское) отклоняются к западу, а на их место поднимаются еще более холодные глубинные воды. В результате, нижние слои прибрежного воздуха охлаждаются, возникает температурная инверсия (когда нижние слои холоднее верхних) и исчезают условия для образования осадков. Поэтому здесь располагаются одни из самых безжизненных пустынь - береговые (Атакама, Намиб). Другим примером является влияние холодного Камчатского течения у восточных берегов Камчатки. Оно дополнительно охлаждает прибрежные области (особенно летом) вытянутого небольшого по площади полуострова, и, как следствие, южная граница тундры распространяется гораздо южнее среднеширотной границы.

Вместе с этим необходимо отметить, что говорить о прямом влиянии теплых океанских течений на увеличение количества осадков прибрежной суши с достаточной степенью уверенности нельзя. Зная механизм образования осадков, приоритет в их появлении необходимо отдать наличию горных территорий на побережьях, по которым воздух поднимается, охлаждается, влага в воздухе конденсируется и формируются осадки. Наличие теплых течений на побережье нужно считать совпадением или дополнительным стимулирующим фактором, но никак не главной причиной образования осадков. Там, где больших гор нет (например, на востоке Южной Америки и аравийском побережье Юго-Западной Азии), наличие теплых течений не ведет к повышению количества осадков (рис. 2). И это несмотря на то, что в этих районах ветер дует со стороны океана на сушу, т.е. существуют все условия для полного проявления влияния теплых течений на побережье.

Рис. 2. Распределение годового количества осадков на востоке Южной Америки (а) и аравийском побережье Юго-Западной Азии (б): красной стрелкой обозначены теплые течения

Что касается непосредственно образования осадков, то общеизвестно, что они формируются при поднятии воздуха вверх и его последующем охлаждении. При этом влага конденсируется и образуются осадки. Ни теплые, ни холодные течения существенного влияния на поднятие воздуха не оказывают. Можно выделить три района Земли, в которых существуют идеальные условия для образования осадков:

1) на экваторе, где воздушные массы всегда восходящие благодаря сложившейся системе циркуляции атмосферы;

2) на наветренных склонах гор, где воздух поднимается вверх по склону;

3) в районах умеренного пояса, испытывающих влияние циклонов, где потоки воздуха всегда восходящие. На мировой карте осадков можно убедиться, что именно в этих районах земли количество осадков наибольшее.

Важным условием образования осадков является благоприятная стратификация атмосферы. Так, на ряде островов, расположенных в центре океанов, особенно в районах, прилегающих к субтропическим антициклонам, в течение круглого года дожди выпадают крайне редко, несмотря на то, что и влагосодержание воздуха здесь достаточно большое, и перенос влаги здесь существует в сторону этих островов. Чаще всего такая ситуация наблюдается в районе пассатов, где восходящие токи слабы и не достигают уровня конденсации. Образование пассатной инверсии объясняется нагреванием воздуха в процессе его опускания в зоне субтропических антициклонов, с последующим охлаждением нижних слоев от более холодной водной поверхности.

Выводы

Таким образом, влияние поверхностных океанских течений на климат прилегающей суши локально и проявляется только при стечении определенных факторов. Благоприятное стечение факторов проявляется, по крайней мере, в двух типах районов Земли. Во-первых, на небольших по площади территориях, сопоставимых с размерами течений. Во-вторых, на территориях с экстремальными (высокими или низкими) температурами. В этих случаях, если вода более теплая, узкая прибрежная полоса суши будет обогреваться (Североатлантическое течение в Британии). Если температура воды течения более низкая - наоборот, узкая прибрежная полоса суши будет охлаждаться (Перуанское течение у западного побережья Южной Америки). В общем случае наибольшее влияние на поступление тепла на сушу оказывает вся масса океанской воды посредством переноса тепла циркуляционными атмосферными потоками.

Таким же образом поступает и влага на сушу - с поверхности всего океана через атмосферные потоки. При этом обязательно должно выполняться одно дополнительное условие - для того, чтобы воздух отдал полученную над океаном влагу, он должен подняться в верхние слои атмосферы, чтобы охладиться. Только тогда влага конденсируется, и выпадают осадки. В этом процессе океанские течения играют очень незначительную роль. Больше всего океанские течения (холодные в тропических широтах) способствуют дефициту осадков. Это проявляется при прохождении холодных течений в тропиках у западных берегов Южной Америки, Африки и Австралии.

Что касается областей, лежащих в глубине континента, например Центрально-Чернозёмных областей Русской равнины, то характер атмосферной циркуляции в безморозный период года обуславливает преимущественно режим антициклональной, солнечной погоды, формирующийся в массах континентально умеренного воздуха. Морские воздушные массы приходят на данную территорию преимущественно в изменённом виде, потеряв на пути своего следования значительную часть своих основных свойств.

Говоря о влиянии Гольфстрима на климат Европы, надо иметь в виду два важных момента. Во-первых, под Гольфстримом в данном случае необходимо понимать всю систему теплых североатлантических течений, а не собственно течение Гольфстрим (оно североамериканское и к Европе никакого отношения не имеет). Во-вторых, помнить о поступлении тепла и влаги с поверхности всего Атлантического океана посредством их переноса воздушными массами. Одного теплого океанского течения для обогрева всей Европы явно мало.

В конце необходимо напомнить, что, являясь ветровыми, поверхностные течения Мирового океана вряд ли исчезнут, пока существует установившаяся на Земле система циркуляции атмосферы.

Библиографическая ссылка

Аничкина Н.В., Ростом Г.Р. О СТЕПЕНИ ВЛИЯНИЯ ОКЕАНСКИХ ПОВЕРХНОСТНЫХ ТЕЧЕНИЙ НА КЛИМАТ ПРИЛЕГАЮЩЕЙ СУШИ // Успехи современного естествознания. – 2016. – № 12-1. – С. 122-126;
URL: http://natural-sciences.ru/ru/article/view?id=36273 (дата обращения: 29.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Теплые течения - трубы водяного отопле­ния земного шара.

А. И. Воейков

Мировой океан, или гидросфера Земли, объединяет почти все океанические и морские воды, имеющие единую по­верхность. Он занимает почти три четверти поверхности земного шара - 361 млн. км 2 , в то время как суша - только 149 млн. (рис. 14).

Средняя глубина относительно невелика - 3,8 км. Столь тонкую гидросферу можно уподобить пленке тол­щиной в 1 мм на глобусе диаметром 3 м. Но она играет огромную роль в органической жизни и климатах Земли.

Океан - колыбель жизни. В далеком прошлом в теп­лых и тихих морских лагунах возникли и развивались первые живые клетки, а потом и простейшие организмы. Если бы жидкая пленка испарилась, то на обсохшей Земле не нашлось бы ни одного уголка для современного высокоразвитого органического мира. Да и тепловой режим стал бы иным - в январе на Северном по­люсе вместо современной средней температуры -30° стало бы -80°.

Океаническая поверхность из всех естественных поверхностей Земли является лучшим поглотителем солнечной радиации. Но та же поверхность в другом агре­гатном состоянии (лед и снег) является наиболее совер­шенным отражателем. Хотя температурная гамма по­верхности океана и приземного слоя атмосферы невелика, но вода в этом тесном диапазоне довольно часто и быстро меняет свое состояние. Такая изменчивость резко сказывается на климате.

Океан - огромный дистиллятор. Он ежегодно испа­ряет 448 000 км 3 воды, а континенты - только 71 000. Чем теплее океан, тем больше он испаряет влаги. Влаж­ный воздух, укрывая планету, понижает утечку тепла в космическое пространство, лучше орошает земли и облегчает земледельцу выращивание обильных урожаев. Океан - мощный терморегулятор планеты. Благо­даря большой массе воды и ее высокой теплоемкости (в 3200 раз большей, чем у воздуха) он летом аккумули­рует солнечное тепло и расходует его зимой на обогрев атмосферы, выравнивая межсезонную изменчивость кли­мата. В ряде случаев океан выравнивает и межгодовые колебания. Материки не способны аккумулировать тепло, поэтому континентальность климата, как правило, воз­растает с удалением от границ с океаном.

Воды океана находятся в беспрерывном движении. Они больше, чем суша, поглощают солнечное тепло и являются генеральным поставщиком энергии в глобаль­ные ветровые системы. Ураганы и штормовые ветры энер­гично перемешивают и перемещают водные массы. Так, течение Западных ветров в Южном полушарии ежегодно переносит вокруг Земли около 6 млн. км 3 воды, что равно двум объемам Средиземного моря. Особенно активен поверхностный 100-200-метровый слой. Но и подповерх­ностные и даже придонные слои океана находятся в вечном движении. Морские течения приносят большие массы тепла и холода. Частица воды может совершить в Мировом океане любые кругосветные путешествия, меняя свое состояние, нагреваясь под экватором и обращаясь в лед в полярных водах обоих полушарий.

Морские течения вместе с воздушными выравнивают температуру между полярными и тропическими широ­тами и полностью выполняют роль, отмеченную в эпи­графе словами А. И. Воейкова.

В табл. 4 приведены температуры по широтным поясам, вычисленные и наблюдаемые. Разность является резуль­татом теплообмена, определяемого циркуляционными про­цессами в атмосферной и гидросферной оболочках Земли. Легко видеть, как сильно сказывается межширотный теплообмен на температурное поле Земли. Если бы его не было, то в экваториальном поясе температура подня­лась бы на 13°, а в широтах от 60° северной широты до по­люса температура в среднем снизилась бы на 22°. На ши­ротах Москвы и Ленинграда господствовал бы климат современной Центральной Арктики, т. е. совершенно непригодный для растительного мира.

Количественное представление о межширотном пере­носе тепла морскими и воздушными циркуляционными процессами дает табл. 5.

Как видно из таблицы, приход солнечной коротко­волновой радиации быстро уменьшается от экватора к полюсу, что находит объяснение в шарообразности Земли. Потери через длинноволновую радиацию, нао­борот, остаются почти неизменными во всех широтных поясах, так как шарообразная поверхность Земли здесь не имеет значения. Отсюда возникает относительный из­быток тепла в широтах ниже 40° и недостаток выше этой границы, что порождает контрасты температур, приве­денных в табл. 4. В реальных условиях, как мы видели, избыток и недостаток тепла уравновешиваются за счет межширотного теплообмена, осуществляемого через ме­ханизмы водо- и воздухообмена.

Практический интерес представляет вопрос - кому же принадлежит определяющая роль в транспортировке тепла от планетарного котла к планетарному холодиль­нику, т. е. от экваториальных и тропических широт к по­лярным? Морской или воздушной адвекции?

В разное время вклад каждой из этих адвекций раз­личен. В современных условиях и в более холодных в прошлом, когда Арктический бассейн в значительной своей части круглый год покрыт дрейфующими льдами, морская адвекция относительно невелика, но по мере того, как в Арктический бассейн нагоняются атланти­ческие воды, ее роль возрастает. Современное соотноше­ние морской и воздушной адвекций отдельными исследо­вателями определяется по-разному: от 1:2 в пользу возду­хообмена до 1:1,5 в пользу морской адвекции. Мы же в своих расчетах воздушную адвекцию в счет принимать не будем, так как ее относительная и абсолютная значи­мость в акриогенных условиях естественно падает. Тот относительно небольшой вклад тепла, который вносит воздушная адвекция, мы будем резервировать в «запас прочности».

А. И. Воейков, называя морские течения регулято­рами температуры, считал, что «воздушные течения далеко не в такой степени содействуют уравнению температур между экватором и полюсом, как морские течения, и по своему прямому влиянию в этом отношении не могут сравняться споследними. Но косвенное влияние их очень велико».

П. П. Лазарев в 1927 г. построил модель океанических и атмосферных циркуляции. Эта модель показала, что океанические течения, проходя через Северный полюс и принося в полярную область большое количество тепла, отепляют ее. Отдавая должное советскому эксперимен­татору, англичанин Брукс отмечал: «Когда модель отображала современное распределение суши и моря, возникавшие в бассейне течения до мелочей оказывались сходными с ныне существующими течениями … В мо­делях, воспроизводивших условия теплых периодов, океа­нические течения проходили через полюс, между тем как в моделях холодных периодов ни одно течение не пере­секало полюса».

Брукс отвергал: самодовлеющую роль атмосферной циркуляции и считал, что возможные ее изменения не спо­собны сами по себе, без привлечения других факторов, вызвать крупные климатические изменения. «Роль атмо­сферной циркуляции, - писал он, - следует рассмат­ривать как регулирующую, иногда, возможно, усиливаю­щую, но не порождающую крупнейшие климатические колебания». Если морские течения, по меткому опре­делению А. И. Воейкова, служат терморегуляторами климата, то этого нельзя сказать о макроциркуляциях атмосферы. Из всех климатообразующих факторов, как отмечал Б. Л. Дзердзеевский, они при своей динамич­ности являются наименее постоянным фактором.

Анализ донных отложений в Арктическом бассейне также подтвердил, что именно морские течения по сравне­нию с воздушными играют определяющую роль в форми­ровании климата. В тех случаях, когда теплые атланти­ческие воды слабо проникали в Арктический бассейн, температура в полярных широтах падала. Низкая темпе­ратура приводила не только к восстановлению ледяного покрова бассейна, но и к возрождению ледниковых щи­тов на континентах.

Придавая огромное значение направлениям морских течений в формировании климата, А. И. Воейков писал: «Не вправе ли мы сказать, взвесив главные условия, влия­ющие на климат: без всякого изменения массы нынешних течений, без изменений средней температуры воздуха на земном шаре опять возможна температура в Грен­ландии, подобная бывшей там в миоценовый период, и опять возможны ледники в Бразилии. Для этого требуются лишь известные изменения, направляющие течения иным образом, чем теперь». Много лет спустя академик Е. К. Федоров указал на необходимость тщательного изучения возможных изменений климата в связи с откло­нением некоторых морских течений, считая, что оно должно стать одним из важнейших направлений в наших исследованиях.

Поэтому будет полезным напомнить краткие характе­ристики современных океанических течений (рис. 15).

Наиболее мощным теплым течением Мирового океана, оказывающим решающее воздействие на климат Северного полушария, является система течений Северной Атлан­тики под общим названием Гольфстрим. Система охва­тывает огромное пространство от Мексиканского залива до берегов Шпицбергена и Кольского полуострова. Собст­венно же Гольфстримом называется участок от места слияния Флоридского течения с Антильским (30° север­ной широты) до острова Ньюфаундленд. На широте 38° мощность достигает 82 млн. км 3 /сек, или 2585 тыс.км 3 /год.

В районе Новой Шотландии и южного края Ньюфаунд­лендской банки Гольфстрим соприкасается с холодными распресненными водами течения Кабота, а затем с водами холодного течения Лабрадор. Мощность Лабра­дора составляет примерно 4 млн. м 3 /сек. Оно вместе с холодными водами выносит в район Большой Банки морские льды и айсберги.

Льды морского происхождения обычно держатся над са­мой банкой и, попадая в воды Гольфстрима, быстро тают. Айсберги же имеют более продолжительную жизнь. Попав в воды Гольфстрима, они дрейфуют на северо-восток и даже снова на север, а нередко совершают длительное плавание по всей Северной Атлантике. В исключительных случаях они заносятся на юг, почти до 30° северной ши­роты, а на восток почти до Гибралтара.

Значительная часть айсбергов распространяется по ок­раинам Большой Банки, особенно по северным, где, садясь на мель, они остаются до тех пор, пока не растают на­столько, что их уменьшенная осадка позволяет им про­должать свой дрейф дальше.

Помимо морских льдов и айсбергов в районе Нью­фаундленда, как и у берегов Лабрадора, встречается и донный лед, по мере образования всплывающий на по­верхность и участвующий в общем дрейфе льда. Поскольку температурная разность контакта Гольфстрима и Лабра­дора очень велика, воды Гольфстрима сильно охлаждаются.

Пройдя Большую Ньюфаундлендскую банку, Гольф­стрим под названием Северо-Атлантического течения дви­жется на восток со средней скоростью 20-25 км/сутки и по мере продвижения к берегам Европы принимает северо-восточное направление. За банками Ньюфаунд­ленда оно отделяет ветви-рукава, теряющиеся в водо­воротах. Около 25° западной долготы от южного его края отходит большая ветвь Канарского течения к Пиреней­скому полуострову.

При подходе к Британским островам от Северо-Атлан­тического течения отделяется с левой стороны большая ветвь - течение Ирмингер, направляющееся на север в сторону Исландии; основная же масса, пересекая порог Уайвилла-Томсона, проходит в проливе между Шетланд­скими и Фарерскими островами и входит в Норвежское море.

Линия порогов Уайвилла-Томсона, а затем Гренландско-Исландский порог являются четкой границей между Атлантическим и Ледовитым океанами. На глубине 1000 м к югу от Фареро-Шетландского порога, имеющего глубину менее 500 м, температура воды почти на 8° выше, чем к се­веру. Соленость на той же глубине с южной стороны по­рога больше на 0,3 промилле. Объяснение этой исключительной контрастности кроется в отклонении к западу глубинных слоев теплых вод на южной стороне, в то время как на се­верной стороне порога холодные воды отклоняются им на восток. В результате на севере от порога вся глубоко­водная часть Гренландского и Норвежского морей запол­нена очень холодной и плотной водой. Эта система поро­гов также разграничивает области с преобладанием на по­верхности атлантических и арктических вод.

Северо-Атлантическое течение, минуя пролив между Фарерскими и Шетландскими островами, под названием Норвежского теплого течения проходит вдоль западного побережья Скандинавского полуострова. В районе пере­сечения Северного полярного круга, с левой стороны от него отходит ветвь самостоятельного потока теплых вод, имеющая во все сезоны года устойчивое направле­ние на север.

Западнее мыса Нордкап, от Норвежского течения с правой стороны отходит на восток в Баренцево море Нордкапское течение. Восточнее 35 меридиана оно хотя и разбивается на мелкие струи, но играет заметную роль в термине Баренцева моря. Так, малая по мощности Мурманская ветвь делает Мурманский порт открытым круглый год для свободного плавания судов любого типа.

Вследствие большей плотности атлантические воды на значительной части акватории Баренцева моря погружаются под легкие слои местной воды. Часть атлан­тических вод проникает в Карское море. Вместе с тем теп­лая атлантическая вода под слоем местной полярной воды заходит в Баренцево море также и с севера, со стороны Арктического бассейна по глубоким желобам западнее и восточнее Земли Франца-Иосифа, куда она попадает как ответвление от уже глубинного Шпицбергенского течения.

Левая ветвь Норвежского течения после отхода от него Нордкапской ветви идет на север под названием Шпиц­бергенского. Основной поток его при входе в пролив Шпицберген-Гренландия теряет часть своей кинетической и тепловой энергии за счет того, что пролив отражает часть водных масс и за счет бокового смешивания с во­дами встречного холодного Восточно-Гренландского те­чения. Отраженные водные массы движутся вначале в за­падном, а затем в южном направлении, вклиниваются в холодные струи Восточно-Гренландского течения и, смешиваясь с ними, образуют круговые течения в районе нулевого меридиана и 74-78° северной широты.

Шпицбергенское течение проходит вдоль Западных берегов Шпицбергена со скоростью около 6 км в сутки, со средней температурой воды 1,9° и соленостью 35 промилле. Севернее Шпицбергена вследствие разности плотностей оно опускается под арктические воды и продолжает свой путь в Центральной Арктике уже в виде глубинного теплого течения. Но это не единственное место, где шпиц­бергенские теплые воды погружаются под холодные аркти­ческие. На Гренландском восточном мелководье всюду на глубинах более 200 м господствуют их высокие поло­жительные температуры. Эти теплые воды могут прони­кать глубоко в заливы и фиорды. Разумеется, такое глу­бокое проникновение под встречные, быстро продвигаю­щиеся на юг распресненные воды, несущие с собой не только паковые льды с глубокой осадкой, но и айсберги, не может происходить без большой потери кинетической энергии и тепла. Работами станции «Северный полюс-1» установлена весьма активная роль атлантических вод в отеплении верхнего холодного слоя. Даже зимой, не­смотря на низкие зимние температуры воздуха, атланти­ческие воды, действуя на льды снизу, все время их ослаб­ляют. Это относится и к местным льдам, и к льдам, выно­симым из Центральной Арктики в Гренландское море.

Пробег вод Гольфстрима от Флоридского пролива до порога Томсона занимает 11 месяцев, а от порога Томсона до Шпицбергена около 13 месяцев.

Течение Ирмингера, отделившись при подходе к северным берегам Британских островов от Северного Атлан­тического течения, приобретает направление на север в сторону Исландии. Примерно на 63° северной широты течение раздваивается. Правая его часть уходит в Датский пролив и своими теплыми водами омывает не только за­падные берега Исландии, но и северные. В этом районе оно входит в соприкосновение с исландской ветвью Вос­точно-Гренландского течения и, смешиваясь с ее водами, охлаждается и движется на юго-восток. Левая, более мощная часть Ирмингерапосле разветвления повора­чивает на юго-запад, а затем на юг, под косым сечением встречается с потоком вод и льдов Восточно-Гренланд­ского течения. На стыке вод температура на расстоянии от 20 до 36 км понижается с 10 до 3°.

В районе южной оконечности Гренландии течения Ирмингер и Восточно-Гренландское концентрически огибают мыс Фарвель и всю юго-западную часть острова и под названием Западно-Гренландского течения проходят через пролив Девиса в Баффинов залив.

Восточно-Гренландское холодное течение, служащее основным трактом для стока вод и выноса льда из Аркти­ческого бассейна, получает свое начало на материковой отмели Азии. При постепенном перемещении от материка на север течение в районе Полюса раздваивается: одна ветвь направляется в американский сектор Арктики, дру­гая - в сторону Гренландского моря. У северо-восточного побережья Гренландии в Восточно-Гренландское течение вливаются воды холодного течения, идущего с запада вдоль северного побережья Гренландии. Ширина Восточно-Гренландского течения у 75-76° северной широты- 175- 220 км, скорость возрастает от двух миль в сутки под ши­ротой 80° до 8 миль под 75°, до 9 миль под 70° и до 16- 18 миль под 65-66° северной широты; температура воды всюду ниже 0°. Пройдя Датский залив, оно соприка­сается с теплым Ирмингероми вместе с ним огибает мыс Фарвель. В этом районе морские льды и айсберги, попадая в струи теплых вод, быстро тают. У мыса Фарвель ширина пояса плавучих льдов в отдельные месяцы достигает 250- 300 км, но благодаря теплым водам Ирмингера, севернее мыса Дезолейшн (62° северной широты), льды никогда не образуют здесь сомкнутого покрова, а ширина их по­яса не превышает нескольких десятков километров.

Лабрадорское течение является продолжением хо­лодного течения Баффиновой Земли, берущего начало у пролива Смита. Оно проходит вдоль берегов полуострова Лабрадор и далее на юг вдоль восточного берега Нью­фаундленда; мощность его примерно 130 000 км 3 /год. Оно несет морские льды и айсберги и, как уже отмечалось, сильно охлаждает воды Гольфстрима. Воды Лабрадора остаются холодными весь год, охлаждая и все омываемое им побережье. Тундровая растительность на Ньюфаунд­ленде обязана своим существованием холодным водам Лабрадора. Примечательно, что почти на той же широте, но по другую сторону Атлантики, во Франции, произ­растают лучшие сорта винограда.

Рассматривая трассы течений Северной Атлантики, мы убеждаемся, насколько прав был А. И. Воейков, когда говорил, что направление морских течений играет огромную роль в формировании климата. На одном и том же меридиане расположен далеко за полярным кру­гом незамерзающий порт Мурманск, а лежащие на 2500 км южнее азовские порты ежегодно замерзают на несколько месяцев. И, наконец, север Атлантического бассейна можно уподобить ванне, в которую через два крана вли­вается холодная вода (Лабрадор и Восточно-Гренланд­ское течения) и через один - теплая вода Гольфстрима. Регулируя краны, мы можем менять термину Атлантики, а с ней и климат окружающих континентов. Признание большой роли морских течений в формировании климата определило с конца прошлого века пути региональных улучшений климатического режима, изменяя направления теплых и холодных течений. Наряду с этим развивались проекты крупных гидротехнических мероприятий по регу­лированию и переброске речного стока. Остановимся на главных гидротехнических проектах по мелиорации при­родных условий.

Океанические течения создают особенно резкие расхождения в температурном режиме поверхности моря и сами влияют на распределение температуры воздуха и на атмосферную циркуляцию. Стойкость океанических течений приводит к тому, что их влияние на атмосферу имеет климатическое значение. Гребень изотерм на картах средней температуры наглядно показывает теплое влияние Гольфстрима на климат восточной части Северной Атлантики и Западной Европы.

Холодные океанические течения также обнаруживаются на средних картах температуры воздуха соответствующими возмущениями в конфигурации изотерм – языками холода, направленными к низким широтам.

Над районами холодных течений увеличивается повторяемость туманов, в частности в Ньюфаундленде, где воздух может переходить от теплых вод Гольфстрима на холодные воды Лабрадорского течения. Над холодными водами в пассатной зоне ликвидируется конвекция и резко уменьшается облачность. Это, в свою очередь, являть фактором, который поддерживает существование так называемых прибрежных пустынь.

Влияние снежного и растительного покрова на климат

Снежный (ледяной) покров уменьшает потерю тепла почвой и колебание ее температуры. Поверхность покрова отражает солнечную радиацию днем и охлаждается излучением ночью, поэтому она снижает температуру приземного слоя воздуха. Весной на таяние снежного покрова расходуется большое количество тепла, которое берется из атмосферы. Таким образом, температура воздуха над тающим снежным покровом, остается близкой к нулю. Над снежным покровом наблюдаются инверсии температуры: зимой - связанные с радиационным выхолаживанием, весной - с таянием снега. Над постоянным снежным покровом полярных областей даже летом отмечаются инверсии или изотермии. Таяние снежного покрова обогащает почву влагой и имеет большое значение для климатического режима теплого времени года. Большое альбедо снежного покрова приводит к усилению рассеянной радиации и увеличению суммарной радиации и освещенности.

Густой травяной покров уменьшает суточную амплитуду температуры почвы и снижает ее среднюю температуру. Также он уменьшает суточную амплитуду температуры воздуха. Более сложное влияние на климат имеет лес, который может увеличивать над собою количество осадков, вследствие шероховатости подстилающей поверхности.

Однако влияние растительного покрова имеет в основном микроклиматическое значение, которое распространяется преимущественно на приземные слои воздуха и на небольшие площади.

Общая циркуляция атмосферы

Общей циркуляцией атмосферы называют систему крупномасштабных воздушных течений над Земным шаром, то есть таких течений, которые по своим размерам сравнимы с большими частями материков и океанов. От общей циркуляции атмосферы отличаются местные циркуляции, такие, как брызги на побережьях морей, горно-долинные ветры, ледниковые ветры и др. Эти местные циркуляции временами в определенных районах накладываются на общую циркуляцию атмосферы.

На ежедневных синоптических картах погоды видно, как в каждый данный момент распределяются течения общей циркуляции над большими площадями Земли или над всем Земным шаром и как непрерывно меняется это распределение. Разнообразие проявлений общей циркуляции атмосферы в особенности зависит от того, что в атмосфере постоянно возникают огромные волны и вихри, которые по-разному развиваются и по-разному перемещаются. Это образования атмосферных возмущений - циклонов и антициклонов - является самой характерной особенностью общей циркуляции атмосферы.

Однако в общей циркуляции атмосферы, при всем разнообразии ее непрерывных изменений, можно заметить и некоторые постоянные особенности, которые повторяются ежегодно. Такие особенности лучше всего обнаруживаются с помощью статистического осреднения, при котором ежедневные возмущения циркуляции более или менее сглаживаются.

Средняя величина давления над каждым полушарием снижается от зимнего полугодия к летнему полугодию. От января к июлю она снижается над северным полушарием на несколько мб; в южном полушарии происходит обратное изменение. Но атмосферное давление равняется весу столба воздуха, а значит, он пропорционален массе воздуха. Это значит, что из того полушария, в который сейчас лето, какая-то масса воздуха оттекает в то полушарие, в котором в настоящее время зима. Так происходит сезонный обмен воздуха между полушариями. За год из северного полушария в южное полушарие и обратно переносится 1013 т воздуха.

Переходим теперь к более детальному рассмотрению условий общей циркуляции по зонам.