Электрические угри — самые мощные генераторы электричества среди рыб. Как вырабатывают электричество электрические угри

Угорь электрический (лат. Electrophorus electricus) принадлежит к отряду Гимнотообразных (Gymnotiformes). Он не приходится родственником обыкновенных угрей и является самой опасной из всех рыб, которые способны вырабатывать электричество.

Его высоковольтный разряд может вызвать у человека шок. Взрослая особь выдает ток напряжением до 800 В. Отрицательный заряд находится в ее хвосте. Напряжение произведенного тока прямо пропорционально ее длине.

Один угорь может вырабатывать столько электроэнергии, что хватит на освещение дома. Электрические органы представляют собой 10 тысяч тонких пластинок. Они образовались из претерпевших изменения мышц брюшной полости. Большая часть веса приходится на эти органы.

Поведение

Электрический угорь относится к числу самых крупных рыб, обитающих на территории Южной Америки. Он предпочитает пресные и теплые водоемы с небольшим течением. Часто его можно наблюдать на Амазонке или Ориноко. Он может поселиться в речных долинах, затопленных водой и в заболоченных низинах тропических лесов.

Проживая в заиленных водоемах с малым количеством кислорода в воде, рыба вынуждена регулярно подниматься на поверхность, чтобы немного подышать. Способность дышать кислородом помогает ей в течение нескольких часов пребывать на суше при условии, что ее тело и ротовая полость будут влажными.

Угорь ведет уединенный образ жизни. Основную часть своего времени он проводит на дне реки или озера, спрятавшись среди водорослей и коряг. Периодически поднимается наверх, чтобы пополнить запасы свежего воздуха. У него отсутствуют легкие. Ротовая полость обильно покрыта специальными сосудами, которые способны поглощать кислород.

Рыба вынуждена каждые 10 минут подниматься на поверхность за порцией кислорода. Зрение она имеет очень плохое и совсем не использует его для ориентации. Анальный плавник тянется от брюха до хвоста. С его помощью она может плавать как вперед, так и назад.

Спрятавшись среди растений, угорь периодически сканирует электричеством окружающее его пространство.

Таким образом он может найти даже неподвижную жертву. Его кожа обильно снабжена рецепторами, которые могут уловить незначительные импульсы электрического тока, создаваемого другими животными.

Затаившись в засаде, охотник поджидает свою добычу, а потом парализует ее разрядом. Имея слабые зубы, он полностью заглатывает свою жертву.

Между собой угри общаются слабыми разрядами. Доминирующий самец производит громкие и частые сигналы, а самки применяют короткие и более длинные.

Размножение

Биологами не обнаружено признаков отличия полов у электрических угрей. Иногда взрослые особи на некоторое время покидают постоянные места проживания. Никто не смог наблюдать место нереста представителей этого вида, и по сей день эта информация остается неизвестной. Предполагают, что они при помощи электрических разрядов распознают пол партнера и его половую зрелость.

Очевидно угри мечут икру, хотя этого никто еще не обнаружил. Через небольшой промежуток времени взрослые особи возвращаются обратно в окружении молодого потомства.

Длина молоди достигает 10 см. Они окрашены в светло-коричневый свет с мраморным рисунком. На первых порах молодые угри находятся под покровительством старших товарищей, хотя сами уже очень агрессивные и не любят нахождения поблизости никаких других рыб.

Описание

Длина взрослых особей достигает 2,5 м, а вес 45 кг. Тупоконечная голова широкая и большая. Ноздри расположены над верхней губой. Маленькие глаза изумрудно зеленого цвета находятся в верхней части головы.

Длинное довольно крупное тело имеет змеевидную форму. На нем отсутствует чешуя и по всему нему разбросаны электрические рецепторы в виде небольших отверстий. Анальный плавник тянется от брюха до хвоста. Электрический орган расположен по обе стороны хвоста. Верхняя часть тела окрашена в оливковый цвет, а брюшко в более светлые тона.

Продолжительность жизни электрического угря в природных условиях неизвестна. В неволе некоторые особи доживают до 18-20 лет.

По результатам экспериментальных исследований оказалось, что очень многие рыбы могут излучать электрические разряды, улавливаемые только специальными чувствительными приборами. Такие разряды важны в поведении рыб, особенно стайных. Но специальные электрогенерирующие органы, способные создавать электрические поля с ощутимым напряжением, отмечены лишь у приблизительно 250 видов (согласно Википедии). Электрический угорь является одним из немногих видов, создающих очень мощный разряд, который может нанести человеку серьёзный удар током и даже убить его. Эти угри так же, как электрические сомы и , применяют эту свою способность для охоты и защиты от врагов.

Секрет электрических угрей и другие особенности

Главным секретом, который скрывается за названием электрический угорь, является то, что эти рыбы не имеют никакого отношения к настоящим угрям, кроме внешнего сходства благодаря очень длинной змеевидной форме тела. Научное название этого вида — Electrophorus electricus. В системе рыб он находится в отряде Гимнотообразных (Gymnotiformes), который в старых изданиях книги «Жизнь животных» был подотрядом отряда Карпообразных. Одним из 4-х семейств этой группы является семейство Электрические угри, которое включает в себя единственный род с одним видом благодаря его исключительной уникальности.

Область распространения и образ жизни

Эти теплолюбивые рыбы распространены в бассейнах крупных южно — американских рек (Ориноко и Амазонки). Они предпочитают неглубокие слабопроточные или стоячие заросшие растительностью, часто заилённые водоёмы (озёра, старицы, пруды). Вода в таких водоёмах обычно мутная и грязная.

Такие условия характеризуются резким недостатком кислорода, растворённого в воде. Поэтому природа позаботилась о возможности получения угрём дополнительного количества кислорода из атмосферного воздуха.

Для этой цели в его ротовой полости есть специальные участки сосудистой ткани, пронизанные большим количеством кровеносных сосудов, которые функционируют наподобие наджаберного органа . На этих участках кровь насыщается кислородом, то есть они действуют, как лёгкие.

Дыхание

Электрический угорь днём обычно лежит на дне своего водоёма, но периодически поднимается к поверхности воды и, высовывая наружу свой широкий рот, втягивает в себя некоторое количество воздуха. Он делает это достаточно шумно и сразу же вновь погружается под воду. Выдыхаемый воздух выходит наружу через жаберные щели. Благодаря такому чётко слышимому дыханию местные туземцы легко могут узнавать о присутствии рыбы.

Заглатывать новую порцию свежего воздуха угри должны с постоянной периодичностью в 15 минут, но они в реальности они делают это чаще. Лишённые возможности подниматься к поверхности воды за воздухом, угри погибают.

При условии сохранения во влажном состоянии ротовой полости и тела этой уникальной рыбы электрический угорь способен несколько часов быть вне воды без ущерба для своего здоровья. Такая особенность и обеспечивает их выживание в тех неблагоприятных условиях, где они обитают.

Внешний вид и внутреннее строение

Electrophorus electricus является очень крупной рыбой, достигая длины до двух с половиной метров или даже больше. Наибольший вес – 20 килограммов. (Некоторые источники дают цифру 40 килограммов, но мы ориентируемся на информацию сайта fishbase.) Обычная длина взрослых рыб – от 1 до 1,5 метров.

Описание внешнего вида:

  • Туловище очень длинное, округлое в сечении за головой и переходящее в сжатое по бокам в хвостовой части.
  • Половины плавников нет — спинного и брюшных.
  • Грудные плавники совсем небольшие, выполняющие роль стабилизаторов во время движения.
  • Анальный плавник необычайно развит. Он длинный: насчитывает примерно 350 лучей; начинается почти сразу за грудными плавниками (за анальным отверстием) и простирается до кончика хвоста.
  • Покрытая слизью толстая кожа, голая, лишённая чешуи, покрывает не только тело, но и плавники.
  • Глаза относительно тела выглядят очень маленькими и находятся ближе к макушке головы, благодаря чему зрительный фокус направлен вверх. Они голубого окраса.
  • Широкий рот очень большой, в нём находятся маленькие зубы, расположенные в два ряда. Их задача ограничивается только крепким захватом и удержанием добычи. Для жевания они не приспособлены, поэтому угорь глотает свою пищу целиком.

Все эти особенности внешности очень хорошо видны на фото электрического угря.

Маскировочный окрас и способы плавания

Electrophorus electricus имеет типичный маскировочный окрас тела: взрослые особи оливково – коричневые с бурым оттенком, лишь голова снизу и в области жаберных крышек оранжевого оттенка. Анальный плавник окрашен так же, как и всё туловище, лишь его край может иметь беловатую окантовку. Молодые рыбы окрашены немного светлее с охристым отливом.

Главным движителем этой удивительной рыбы является необычайно длинный покрытый мягкой кожей анальный плавник. Расположенный вдоль всего брюха, он немного напоминает киль корабля. Ему помогают короткие грудные плавники.


Совершая волнообразные движения анальным плавником и стабилизируя положение туловища грудными, он может плыть прямо или чуть дугообразно. Для наблюдателя это выглядит невероятно красиво. При необходимости электрический угорь ловко и быстро меняет направление своего пути, не разворачиваясь всем корпусом. Он просто начинает плыть назад хвостом благодаря изменению направления волнообразного колебания своего анального плавника.

Генерирование электрических разрядов

Генерация электрических разрядов очень высокого напряжения – это главная уникальная способность электрических угрей, которая многие годы служит предметом исследований учёных. Удалось выяснить, что электрический орган – это парные тела продолговатой формы, находящиеся сразу под толстой кожей и занимающие 80% от длины всего туловища. Они пролегают вдоль всего позвоночника, их две пары. Как пишет Брем в книге «Жизнь животных», по консистенции эти образования студенистые в виде мягкой просвечивающей массы красновато – жёлтого цвета. Их вес составляет 30 процентов от общего веса рыбы.

Любопытное свойство слизи, обильно покрывающей кожу угря: её электропроводность почти в 30 раз выше, чем у чистой воды (из книги Брема «Жизнь животных»).

По сути электрический орган, имеющийся у Electrophorus electricus, является оригинальной живой батарейкой, у которой «минус» соответствует задней части туловища, а «плюс» — передней. Сгенерированный такой огромной батарейкой электрический разряд, может иметь напряжение до 600 вольт и выше (у очень крупных особей), обычно — примерно 350 вольт. Поэтому учёные относят угря к сильноэлектрическим рыбам, и в этом списке он занимает 1-е место.

На основе конструкции энергогенерирующих тел Electrophorus electricus химиками и инженерами (Мичиганский университет, США) создана биосовместимая батарея, обладающая достаточной гибкостью для успешной имплантации в живые организмы в качестве источника питания моторизированных имплантов. Предлагаемые до сих пор батареи не являлись биосовместимыми.

Создаваемые разряды используются для нескольких целей: защиты, охоты, ориентации в пространстве и оповещения особей своего вида о своём присутствии. Каждая цель достигается при помощи разрядов различной величины – либо слабых, либо сильных.

Питание и защита от врагов

Электрические угри являются хищниками, у которых почти нет врагов в естественном окружении. Молодь поедает беспозвоночных. Взрослые особи съедят любое живое существо, которое смогут обнаружить и ухватить. Все водные обитатели предпочитают не приближаться к ним. Угри являются угрозой не только для рыб, которые служат основой их рациона, но и для ящериц, черепах, лягушек и даже мелких млекопитающих.

Серьёзную опасность для самих угрей представляют лишь кайманы. С молодыми и неопытными кайманами они справляются при помощи хорошего электрического разряда, получив который пресмыкающееся отступает. Но взрослый крупный чёрный кайман иногда может поймать и съесть электрическую рыбу, оставаясь устойчивым к полученному разряду.

В условиях мутной и грязной воды, где живут угри, зрение не является важным инструментом для получения информации о том, что находится вокруг, и для поиска пищи тоже. Поэтому оно у них плохо развито, а по мере взросления, как предполагают учёные, становится хуже.

Охота с использованием дистанционного элеткрошока

Электрический угорь применяет уникальную охотничью стратегию, используя свои электрические разряды, которые бывают трёх типов:

  • Низковольтные импульсы (для ориентации рыбы в окружающем пространстве мутной воды).
  • Серия двух-трёх коротких по продолжительности (доли миллисекунд) высоковольтных импульсов.
  • Продолжительная по времени последовательность высоковольтных разрядов.

Эти выводы были сделаны зоологом Кеннетом Катания (США, Университет Вандербильта) на основе лабораторных наблюдений за электрическими угрями, содержавшимися в аквариуме со специальным оборудованием.

Охотничья стратегия

Угри охотятся по ночам, и охотничья стратегия состоит их двух этапов:

  • Чтобы обнаружить затаившуюся добычу они запускают во все стороны короткую серию двух-трёх импульсов высокого напряжения. Мышцы рыбы, получившей такой разряд, начинают сокращаться, и она дёргается, вызывая движением своего тела колебания воды. Этого для угря достаточно, он сразу понимает, в каком направлении находится добыча и плывёт туда.
  • При непосредственном нападении на обнаруженную жертву электрический угорь посылает в её сторону многовольтный разряд (350 и до 600 вольт) на высокой частоте, который обездвиживает её. Пока добыча парализована и не прошёл электрошок угорь её быстро хватает и проглатывает целиком.

Для обездвиживания обнаруженной при помощи коротких разрядов высокого напряжения добычи угри применяют дистанционный электрошок, посылая около 400 высоковольтных импульсов в секунду. По сути они контролируют мышцы своих жертв, приказывая им начать двигаться или остановиться.

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Длина от 1 до 3 м, вес до 40 кг. Кожа у электрического угря голая, без чешуи, тело сильно удлинённое, округлое в передней части и несколько сжатое с боков в задней части. Окраска взрослых электрических угрей оливково-коричневая, нижняя сторона головы и горла ярко-оранжевая, край анального плавника светлый, глаза изумрудно-зелёные.

Интересно развитие у электрического угря в ротовой полости особых участков сосудистой ткани, которые позволяют ему усваивать кислород непосредственно из атмосферного воздуха. Для захватывания новой порции воздуха, угорь должен подниматься к поверхности воды по крайней мере один раз в пятнадцать минут, но обычно он проделывает это несколько чаще. Если рыбу лишить такой возможности, то она погибнет. Способность электрического угря использовать для дыхания атмосферный кислород позволяет ему в течение нескольких часов находиться вне воды, но только в том случае, если его тело и ротовая полость остаются влажными. Эта особенность обеспечивает повышенную выживаемость угрей в неблагоприятных условиях существования.

О размножении электрических угрей почти ничего не известно. Электрические угри неплохо приживаются в неволе и часто служат украшением больших публичных аквариумов . Эта рыба представляет опасность при непосредственном контакте с ней.

Интересным в структуре электрических угрей являются электрические органы , которые занимают более 2/3 длины тела. Генерирует разряд напряжением до 1300 В и силой тока до 1 A. Положительный заряд находится в передней части тела, отрицательный - в задней. Электрические органы используются угрём для защиты от врагов и для парализации добычи, которую составляют в основном некрупные рыбы. Есть так же дополнительный электрический орган, который играет роль локатора. Для человека он не опасен, но при ударе током будет очень больно.

Примечания

Ссылки

Категории:

  • Животные по алфавиту
  • Виды вне опасности
  • Гимнотообразные
  • Электрические рыбы
  • Животные, описанные в 1766 году
  • Рыбы Южной Америки

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрический угорь" в других словарях:

    электрический угорь - Электрический угорь. электрический угорь (Electrophorus electricus), рыба семейства электроугревых. Эндемик Южной Америки. Тело удлинённое (около 2 м), весит до 20 кг, спинного и брюшных плавников нет. Окраска сверху оливково зелёная со светлыми… … Энциклопедический справочник «Латинская Америка»

    Рыба отряда карпообразных. Единственный вид семейства. Имеет электрические органы, занимающие ок. 4/5 длины тела. Дает разряд до 650 В (обычно меньше). Длина от 1 до 3 м, весит до 40 кг. В реках Амазонка и Ориноко. Объект местного промысла.… … Большой Энциклопедический словарь

    Рыба отряда карпообразных. Единственный вид семейства. Имеет электрические органы, занимающие около 4/5 длины тела. Дают разряд до 650 В (обычно меньше). Длина от 1 до 3 м, масса до 40 кг. Обитает в реках Амазонка и Ориноко. Объект местного… … Энциклопедический словарь

    ГИМНОТ ИЛИ ЭЛЕКТРИЧЕСКИЙ УГОРЬ костистая рыба из сем. угрей; вод. в Америке; обладает способностью производить сильные электр. удары. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ГИМНОТ или ЭЛЕКТРИЧЕСКИЙ УГОРЬ… … Словарь иностранных слов русского языка

    - (Electrophorus electricus) рыба семейства Electrophoridae отряда карпообразных. Обитает в пресных водах Центральной и Южной Америки. Тело голое, длиной до 3 м. Весит до 40 кг. Вдоль боков расположены Электрические органы. Спинных … Большая советская энциклопедия

    Рыба отр. карпообразных. единств. вид семейства. Имеет электрич. органы, занимающие ок. 4/5 длины тела. Дают разряд до 650 В (обычно меньше). Дл. от 1 до 3 м, масса до 40 кг. Обитает в pp. Амазонка и Ориноко. Объект местного промысла. Лаб.… … Естествознание. Энциклопедический словарь

    электрический угорь - elektrinis ungurys statusas T sritis zoologija | vardynas taksono rangas rūšis atitikmenys: lot. Electrophorus electricus angl. electric eel rus. электрический угорь ryšiai: platesnis terminas – elektriniai unguriai … Žuvų pavadinimų žodynas

    См. Электрические рыбы … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Электрический сом … Википедия

    ЭЛЕКТРИЧЕСКИЙ, электрическая, электрическое. 1. прил. к электричество. Электрический ток. Электрическая энергия. Электрический заряд. Электрический разряд. || Возбуждающий, производящий электричество. Электрическая машина. Электрическая станция.… … Толковый словарь Ушакова

Книги

  • Искра жизни. Электричество в теле человека , Эшкрофт Фрэнсис. Все знают, что электричество приводит в действие машины, гораздо менее известно, что это же самое можно сказать о нас самих. Способность читать и понимать написанное, видеть и слышать, думать…