Вид гибридизации электронных орбиталей. Типы гибридизации

ГИБРИДИЗАЦИЯ - это явление взаимодействия между собой молекулярных орбиталей, близких по энергии и имеющих общие элементы симметрии, с образованием гибридных орбиталей с более низкой энергией.

Чем полнее в пространстве перекрываются друг с другом электронные облака, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами

Иногда связь между атомами прочнее, чем этого можно было ожидать на основании расчета. Предполагается, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей (s, p, d) возникают новые атомные орбитали промежуточной формы, которые называются гибридными .

Перестройка различных атомных орбиталей в новые орбитали, усредненные по форме называется гибридизацией .

Число гибридных орбиталей равно числу исходных. Так, при комбинации s- и р-орбиталей (sp-гиб­ридизация) возникают две гибридные орбитали, которые ориентируются под углом 180° друг к другу, рис.3, табл. 5 и 6.

(s+p)-орбитали Две sp- орбитали Две sp-гибридные

орбитали

Рисунок 3 – sp – Гибридизация валентных орбиталей


Таблица 6 – Образование гибридных орбиталей


Таблица 7 – Образование некоторых молекул V и VI периодов

Химическая связь, образуемая электронами гибридных орбиталей, прочнее связи с участием электронов негибридных орбиталей, так как при гибридизации перекрывание происходит в большей степени. Гибридные орбитали образуют только s-связи .

Подвергаться гибридизации могут орбитали, которые имеют близкие энергии. У атомов с малым значением заряд ядра для гибридизации пригодны только s– и р –орбитали. Это наиболее характерно для элементов второго периода II – VI групп, табл. 6 и 7.

В группах сверху вниз с увеличением радиуса атома способность образовывать ковалентные связи ослабевавает, усиливается различие в энергиях s - и р-электронов, уменьшается возможность их гибридизации.

Электронные орбитали, участвующие в образовании связей, и их пространственная ориентация определяют геометрическую форму молекул.

Линейная форма молекул . Соединения, имеющие линейную форму молекул, образуются при перекрывании:

1. Двух s– орбиталей (s – s связь): Н 2 , Na 2 , K 2 и др.

2. s - и р–орбиталей (s – р связь): НС1, НВr и др.

3. Двух р– орбиталей (р – р связь): F 2 , C1 2 , Вr 2 и т.д.

s–s s–p р–р

Рисунок 4 – Линейные молекулы

Линейную форму молекул образуют также атомы некоторых элементов II группы с атомами водорода или галогенов (ВеН 2 , ВеГ 2 , ZnГ 2). Рассмотрим образование молекул ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона (2s l и 2р 1), следовательно, происходит sp–гибридизация, при которой образуются две sp-гибридные орбитали, расположенные относительно друг друга под углом 180° (см гибридизацию орбиталей). При взаимодействии бериллия с галогенами происходит перекрывая двух sp–гибридных орбиталей атома бериллия с р–орбиталями двух атомов хлора, в результате образуется молекула линейной формы, рис. 5.

Рисунок 5 – Линейная молекула BeCl 2

Треугольная форма молекул имеет место при образо­вании галогенидов бора, алюминия. Возбужденный атом бо­та имеет три неспаренных электрона (2s 1 и 2р 2), При образовании химических связей происходит sp 2 -гибридизация и образуются три sp 2 - гибиридные орбитали, которые лежат в одной плоскости и ориентированы друг к другу под углом 120°, рис. 6.

(s+p+p)- три sp 2 - гибрид­ные

орбитали орбитали

Рисунок 6 – sp 2 –Гибридизация валентных орбиталей (а) и

треугольная молекула ВСl 3 (б)

При взаимодействии бора с хлором происходит перекрывание трех sр 2 -гибридных орбиталей атома бора с р-орбиталями трех атомов хлора, в результате образуется молекула, имеющая форму плоского треугольника. Валентный угол в молекуле ВСl 3 равен 120°.

Тетраэдрическая форма молекулы характерна для соединений элементов IV группы главной подгруппы с галогенами, водородом. Так, атом углерода в возбужденном со­стоянии имеет четыре неспаренных электрона (2s 1 и 2р 3) следовательно, происходит sp-гибридизация, при которой образуются четыре гибридные орбитали, расположенные друг к другу под углом 109,28°, рис. 7.

(s+p+p+p)- четыре sp 3 -гибрид­ные

орбитали орбитали

Рисунок 7 – sp 3 –Гибридизация валентных орбиталей (а) и

тетраэдрическая молекула СН 4 (б)

При перекрывании четырех sp 3 -гибридных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется молекула метана, которая имеет форму тетраэдра. Валентный угол равен 109,28°.

Рассмотренные геометрические формы молекул (линейные, треугольные, тетраэдрические) являются идеальными (правило Гиллеспи).

В отличие от выше рассмотренных соединений молекулы элементов V и VI групп главных подгрупп имеют валентные неподеленные пары электронов, поэтому углы между связями оказываются меньшими по сравнению с идеальным молекулами.

Пирамидальная форма молекул имеет место при образовании водородных соединений элементов V групп главной подгруппы. При образовании химической связи, например, у атома азота также как и у атома углерода происходит sp 3 -гибридизация и образуется четыре sp 3 -гибридные орбитали, которые ориентированы под углом 109,28 о друг к другу. Но в отличие от атома углерода у атома азота в гибридизации принимают участие не только одноэлектронные орбитали (2р 3), но и двухэлектронная (2s 2). Поэтому из четырех sp 3 -гибридных орбиталей на трех находятся по одному электрону (одноэлектронная орбиталь), эти орбитали образуют связи с тремя атомами водорода. Четвертая орбиталь с неподелениой парой электронов не принимает участия в образовании связи. Молекула NH 3 имеет форму пирамиды, рис. 8.

Рисунок 8 – Пирамидальная молекула аммиака

В вершине пирамиды находится атом азота, а в углах (треугольника) основания – атомы водорода. Валентный угол равен 107,3°. Отклонение значения угла от тетраэдрического (109,28°) обусловлено отталкиванием между неподеленной парой электронов на четвертой sp 3 -гибридной ор­битали и связывающими парами на трех остальных орбиталях, т.е. sp 3 -гибридная орбиталь с неподеленной парой электронов отталкивает в направлении от себя три осталь­ные орбитали связи N–H, уменьшая угол до 107,3°.

В соответствии с правилом Гиллеспи: если централь­ный атом относится к элементам третьего или последующих периодов, а концевые атомы принадлежат менее электроотри­цательным элементам, чем галогены, то образование связей осуществляется через чистые р - орбитали и валентные углы становятся » 90°, следовательно, у аналогов азота (Р, As, Sb) гибридизация орбиталей в молекулах водородных соединений не наблюдается. Например, в образовании молекулы фосфина (РН 3) участвуют три неспаренных р-электрона (3s 2 и 3р 3), электронные орбитали которых расположены в трех взаимно перпендикулярных направле­ниях, и s-электроны трех атомов водо­рода. Связи располагаются вдоль трех осей р-орбиталей. Образовавшиеся молекулы имеют, как и молекулы NН 3 , пирамидальную форму, но в отличие от молекулы NН 3 , в молекуле РН 3 валентный угол равен 93,3°, а в соеди­нениях AsH 3 и SbH 3 – соответственно 91,8 и 91,3°, рис. 9 и табл. 4.

Рисунок 9 – Молекула РН 3

Неподеленная пара электронов будет занимать нес­вязывающую s- орбиталь.

Угловую форму молекул образуют водородные соединения элементов VI группы главной подгруппы. Рассмотренные особенности образования связей в соединениях элементов V группы характерны и для водородных соединений элементов VI группы. Так, в молекуле воды атом кислорода, так же как и атом азота, находится в состоянии sp 3 -гибридизаци. Из четырех sp 3 -гибридных орбитам на двух находится по одному электрону, эти орбитали образуют связи с двумя атомами водорода.

Две другие из четырех sp 3 -гибридных орбиталей содержат по неподеленной паре электронов и не принимав участия в образовании связи.

Молекула Н 2 О имеет угловую форму, валентный угол равен 104,5°. Отклонение значения угла от тетраэдрического в еще большей степени обусловлено отталкиванием от двух неподеленных пар электронов, рис. 10.

Рисунок 10 – Угловая молекула воды

Угловую форму молекул имеют H 2 S, H 2 Se, H 2 Te, только у аналогов кислорода образование связей в соединенн Н 2 Э осуществляется через чистые р-орбитали (правило Гиллеспи), поэтому валентные углы составляют »90°. Так, в молекулах H 2 S, H 2 Se, H 2 Te они соответственно равны 92; 91; 89,5°.

Таблица 8 – Молекулы водородных соединений элементов 2-го периода

Гибридизацией называется гипотетический процесс смешения различного типа, но близких по энергии орбиталей данного атома с возникновением того же числа новых (гибридных 1) орбиталей, одинаковых по энергии и форме.

Гибридизация атомных орбиталей происходит при образовании ковалентных связей.

Гибридные орбитали имеют форму объёмной несимметричной восьмёрки, сильно вытянутой в одну сторону от атомного ядра: .

Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей. Поэтому энергия, затрачиваемая на гибридизацию атомных орбиталей, с избытком компенсируется выделением энергии за счёт образования более прочных ковалентных связей с участием гибридных орбиталей. Название гибридных орбиталей и тип гибридизации определяются числом и типом участвующих в гибридизации атомных орбиталей, например: sp -, sp 2 -, sp 3 -, sp 2 d - или sp 3 d 2 -гибридизация .

Направленность гибридных орбиталей, а следова­тельно, и геометрия молекулы зависят от типа гибридизации. На практике обычно решается обратная задача: вначале экспери­ментально устанавливается геометрия молекулы, после чего описывается тип и форма гибридных орбиталей, участвующих в её образовании.

sp -Гибридизация. Две гибридных sp - орбитали в результате взаимного отталкивания располагаются относительно атомного ядра таким образом, что угол между ними составляет 180° (рис. 7).

Рис. 7. Взаимное расположение в пространстве двух sp - гибридных орбиталей одного атома: а - поверхности, охватывающие области пространства, где вероятность пребывания электрона составляет 90 %; б - условное изображение.

В результате такого расположения гибридных орбиталей молекулы состава АХ 2 , где А является центральным атомом, имеют линейное строение , то есть ковалентные связи всех трёх атомов располагаются на одной прямой. Например, в состоянии sp - гибридизации находятся валентные орбитали атома бериллия в молекуле ВеС1 2 (рис. 8). Линейную конфигурацию вследствие sp - гибридизации валентных орбиталей атомов имеют также молекулы ВеН 2 , Ве(СН 3) 2 , ZnCl 2 , CO 2 , HC≡N и ряд других.

Рис. 8. Трёхатомная линейная молекула хлорида бериллия ВеС1 2 (в газообразном состоянии): 1 - 3р- орбиталь атома Cl; 2 - две sp - гибридные орбитали атома Be.

s р 2 -Гибридизация. Рассмотрим гибридизацию одной s - и двух р- орбиталей. В этом случае в результате линейной комбинации трёх орбиталей возникают три гибридные s р 2 -орбитали. Они располагаются в одной плоскости под углом 120° друг к другу (рис. 9). s р 2 -Гибридизация характерна для многих соединений бора, который, как показано выше, в возбуждённом состоянии имеет три неспаренных электрона: один s - и два р -электрона. При перекрывании s р 2 -орбиталей атома бора с орбиталями других атомов образуются три ковалентные связи, равноценные по длине и энергии. Молекулы, в которых валентные орбитали центрального атома находятся в состоянии s р 2 -гибридизации, имеют треугольную конфигурацию. Углы между ковалентными связями равны 120°. В состоянии s р 2 -гибридизации находятся валентные орбитали атомов бора в молекулах BF 3 , BC1 3 , атомов углерода и азота в анионах СО 3 2 - , NO 3 - .

Рис. 9. Взаимное расположение в пространстве трёх s р 2 -гибридных орбиталей.

s р 3 -Гибридизация. Очень большое распространение имеют вещества, в молекулах которых центральный атом содержит четыре s р 3 -орбитали, образующиеся в результате линейной комбина­ции одной s - и трёх р -орбиталей. Эти орбитали располагаются под углом 109˚28′ друг к другу и направлены к вершинам тетраэдра, в центре которого находится атомное ядро (рис. 10 а).

Образование четырёх равноценных ковалентных связей за счёт перекрывания s р 3 -орбиталей с орбиталями других атомов характерно для атомов углерода и других элементов IVA-группы; это обуславлиает тетраэдрическую структуру молекул (СН 4 , CC1 4 , SiH 4 , SiF 4 , GeH 4 , GeBr 4 и др).

Рис. 10. Влияние несвязывающих электронных пар на геометрию молекул:

a – метана (несвязывающих электронных пар нет);

б – аммиака (одна несвязывающая электронная пара);

в – воды (две несвязывающие пары).

Неподелённые электронные пары гибридных орбита лей . Во всех рассмотренных примерах гибридные орбитали были "заселены" одиночными электронами. Однако нередки случаи, когда гибридная орбиталь "заселена" электронной парой. Это оказывает влияние на геометрию молекул. Поскольку несвязывающая электронная пара испытывает воздействие ядра только своего атома, а связывающая электронная пара находится под действием двух атомных ядер, несвязывающая электронная пара находится ближе к атомному ядру, чем связывающая. В результате этого несвязывающая электронная пара сильнее отталкивает связывающие электронные пары, чем те отталкивают друг друга. Графически для наглядности большую отталкивающую силу, действующую между несвязывающей и связывающими электронными парами, можно изобразить большей по объёму электронной орбиталью несвязывающей пары. Несвязывающая электронная пара имеется, например, у атома азота в молекуле аммиака (рис. 10 б ). В результате взаимодействия со связывающими электронными парами валентные углы Н-N-Н сокращаются до 107,78° по сравнению со 109,5°, характерными для правильного тетраэдра.

Ещё большее отталкивание испытывают связывающие электронные пары в молекуле воды, где у атома кислорода имеются две несвязывающие электронные пары. В результате чего валентный угол Н-О-Н в молекуле воды равен 104,5° (рис. 10 в ).

Если несвязывающая электронная пара в результате образования ковалентной связи по донорно-акцепторному механизму превращается в связывающую, то силы отталкивания между этой связью и другими ковалентными связями в молекуле выравниваются; выравниваются и углы между этими связями. Это происходит, например, при образовании катиона аммония:

Участие в гибридизации d -орбиталей. Если энергия атомных d - орбиталей не очень сильно отличается от энергий s - и р- орбиталей, то они могут участвовать в гибридизации. Самым распространённым типом гибридизации с участием d - орбиталей является s р 3 d 2 - гибридизация, в результате которой образуются шесть равноценных по форме и энергии гибридных орбиталей (рис. 11 а ), расположенных под углом 90˚ друг к другу и направленных к вершинам октаэдра, в центре которого находится атомное ядро. Октаэдр (рис. 11 б ) является правильным восьмигранником: все рёбра в нём равной длины, все грани – правильные треугольники.

Рис. 11. s р 3 d 2 - Гибридизация

Реже встречается s р 3 d - гибридизация с образованием пяти гибридных орбиталей (рис. 12 а ), направленных к вершинам тригональной бипирамиды (рис. 12 б ). Тригональная бипирамида образуется соеинением двух равнобедренных пирамид общим основанием - правильным треугольником. Полужирными штрихами на рис. 12 б показаны рёбра равной длины. Геометрически и энергетически s р 3 d - гибридные орбитали неравноценны: три «экваториальные» орбитали направлены к вершинам правильного треугольника, а две «аксиальные» - вверх и вниз перпендикулярно плоскости этого треугольника (рис. 12в ). Углы между «экваториальными» орбиталями равны 120°, как при s р 2 - гибридизации. Угол между «аксиальной» и любой из «экваториальных» орбиталей равны 90°. Соответственно этому ковалентные связи, которые образуются с участием «экваториальных» орбиталей отличаются по длине и энергии от связей, в образовании которых участвуют «аксиальные» орбитали. Например, в молекуле РС1 5 «аксиальные» связи имеют длину 214 пм, а «экваториальные» - 202 пм.

Рис. 12. s р 3 d - Гибридизация

Таким образом, рассматривая ковалентные связи как результат перекрывания атомных орбиталей, можно объяснить геометрию возникающих при этом молекул и ионов, которая зависит от числа и типа атомных орбиталей, участвующих в образовании связей. Концепцию гибридизации атомных орбиталей, необходимо понимать, что гибридизация представляет собой условный приём, позволяющий наглядно объяснить геометрию молекулы посредством комбинации АО.

Задача 261.
Какие типы гибридизации АО углерода соответствуют образованию молекул СН 4 , С 2 Н 6 , С 2 Н 4 , С 2 Н 2 ?
Решение:
а) В молекулах СН 4 и С 2 Н 6 валентный электронный слой атома углерода содержит четыре электронных пары:

Поэтому электронные облака атома углерода в молекулах СН 4 , С 2 Н 6 будут максимально удалены друг от друга при sp3-гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле СН 4 все вершины тетраэдра будут заняты атомами водорода, так что молекула СН4 имеет тетраэдрическую конфигурацию с атомом углерода в центре тетраэдра. В молекуле С 2 Н 6 атомы водорода занимают три вершины тетраэдра, а к четвёртой вершине направлено общее электронное облако другого атома углерода, т.е. два атома углерода соединены друг с другом. Это можно представить схемами:

б) В молекуле С 2 Н 4 валентный электронный слой атома углерода, как и в молекулах СН 4 , С 2 Н 6 . содержит четыре электронные пары:

При образовании С 2 Н 4 три ковалентные связи образованы по обычному механизму, т.е. являются - связями, и одна - - связь. При образовании молекулы С 2 Н 4 каждый атом углерода с двумя атомами водорода - связями и друг с другом двумя связями, одной - и одной - связями. Гибридные облака, соответствующие данному типу гибридизации, располагаются в атоме углерода так, чтобы взаимодействие между электронами было минимальным, т.е. как можно дальше друг от друга. Данное расположение атомов углерода (две двойные связи между атомами углерода) характерно для sp 2 -гибридизации АО углерода. При sp 2 -гибридизации электронные облака в атомах углерода ориентированы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. в направлениях к вершинам правильного треугольника. В молекуле этилена в образовании - связей участвуют три sp 2 -гибридные орбитали каждого атома углерода, две между двумя атомами водорода и одна со вторым атомом углерода, а - связь образуется за счёт р-электронных облаков каждого атома углерода. Структурная формула молекулы С 2 Н 4 будет иметь вид:

в) В молекуле С 2 Н 2 валентный электронный слой атома углерода содержит четыре пары электронов:

Структурная формула С 2 N 2 имеет вид:

Каждый атом углерода соединён одной электронной парой с атомом водорода и тремя электронными парами с другим атомом углерода. Таким образом, в молекуле ацетилена атомы углерода соединены друг с другом одной -связью и двум -связями. С водородом каждый атом углерода соединён -связью. В образовании - связей участвуют две sp-гибридные АО, которые расположены друг относительно друга так, что взаимодействие между ними минимальное, т.е. как можно дальше друг от друга. Поэтому при sp-гибридизации электронные облака между атомами углерода ориентированы в противоположных направлениях друг относительно друга, т.е. угол между связями С-С составляет 180 0 . Поэтому молекула С 2 Н 2 имеет линейное строение:

Задача 262.
Указать тип гибридизации АО кремния в молекулах SiH 4 и SiF 4 . Полярны ли эти молекулы?
Решение:
В молекулах SiH 4 и SiF 4 валентный электронный слой содержит четыре пары электронов:

Поэтому в обоих случаях электронные облака атома кремния будут максимально удалены друг от друга при sp 3 -гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле SiH 4 все вершины тетраэдра заняты атомами водорода, а в молекуле SiF 4 – атомами фтора, так что эти молекулы имеют тетраэдрическую конфигурацию с атомом кремния в центре тетраэдра:

В тетраэдрических молекулах SiH 4 и SiF 4 дипольные моменты связей Si-H и Si-F взаимно компенсируют друг друга, так что суммарные дипольные моменты обоих молекул будут равны нулю. Эти молекулы неполярны, несмотря на полярность связей Si-H и Si-F.

Задача 263.
В молекулах SО 2 и SО 3 атом серы находится в состоянии sp 2 -гибридизации. Полярны ли эти молекулы? Какова их пространственная структура?
Решение:
При sp 2 -гибридизации гибридные облака располагаются в атоме серы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. направленных к вершинам правильного треугольника.

а) В молекуле SО 2 две sp 2 -гибридные АО образуют связь с двумя атомами кислорода, третья sp 2 -гибридная орбиталь будет занята свободной электронной парой. Эта электронная пара будет смещать электронную плоскость и молекула SО 2 примет форму неправильного треугольника, т.е. угол OSO не будет равен 120 0 . Поэтому молекула SО 2 будет иметь угловую форму при sp 2 -гибридизации орбиталей атома структуру:

В молекуле SО 2 взаимной компенсации дипольных моментов связей S-O не происходит; дипольный момент такой молекулы будет иметь значение больше нуля, т.е. молекула полярна.

б) В угловой молекуле SО 3 все три sp2-гибридные АО образуют связь с тремя атомами кислорода. Молекула SО 3 будет иметь форму плоского треугольника с sp 2 -гибридизацией атома серы:

В треугольной молекуле SО 3 дипольные моменты связей S-O взаимно компенсируют друг друга, так что суммарный дипольный момент будет равен нулю, молекула полярна.

Задача 264.
При взаимодействии SiF4 с HF образуется сильная кислота Н 2 SiF 6 , диссоциирующая на ионы Н + и SiF 6 2- . Может ли подобным образом протекать реакция между СF 4 и НF? Указать тип гибридизации АО кремния в ионе SiF 6 2- .
Решение:
а) При возбуждении атом кремния переходит из состояния 1s 2 2s 2 2p 6 3s 2 3p 3 в состояние 1s 2 2s 2 2p 6 3s 1 3p 4 3d 0 , а электронное строение валентных орбиталей соответствует схеме:

Четыре неспаренных электрона возбуждённого атома кремния могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2p 5), имеющими по одному неспаренному электрону с образованием молекулы SiF 4 .

При взаимодействии SiF 4 с HF образуется кислота Н 2 SiF 6 . Это возможно, потому что в молекуле SiF 4 имеются свободные 3d-орбитали, а в ионе F- (1s 2 2s 2 2p 6) свободные пары электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов каждого из двух ионов F - (HF ↔ H + + F -) и свободных 3d-орбиталей молекулы SiF 4 . При этом образуется ион SiF 6 2- , который с ионами H + образует молекулу кислоты Н 2 SiF 6 .

б) Углерод (1s 2 2s 2 2p 2) может образовать, подобно кремнию, соединение СF 4 , ног при этом валентные возможности атома углерода будут исчерпаны (нет неспаренных электронов, свободных пар электронов и свободных валентных орбиталей на валентном уровне). Схема строения валентных орбиталей возбуждённого атома углерода имеет вид:

При образовании СF 4 все валентные орбитали углерода заняты, поэтому ион образоваться не может.

В молекуле SiF 4 валентный электронный слой атома кремния содержит четыре пары электронов:

Это же наблюдается и для молекулы СF 4 . поэтому в обоих случаях электронные облака атомов кремния и углерода будут максимально удалены друг от друга при sp3-гибридизации. Когда их оси будут направлены к вершинам тетраэдра:

Метод валентных связей позволяет наглядно объяснить пространственные характеристики многих молекул. Однако, привычного представления о формах орбиталей не достаточно для ответа на вопрос, почему при наличии у центрального атома разных – s , p , d – валентных орбиталей, образованные им связи в молекулах с одинаковыми заместителями оказываются эквивалентными по своим энергетическим и пространственным характеристикам. В двадцатые годы XIX века Лайнусом Полингом была предложена концепция гибридизации электронных орбиталей. Под гибридизацией понимают абстрактную модель выравнивания атомных орбиталей по форме и энергии.

Примеры формы гибридных орбиталей представлены в таблице 5.

Таблица 5. Гибридные sp, sp 2 , sp 3 орбитали

Концепцию гибридизации удобно использовать при объяснении геометрической формы молекул и величины валентных углов (примеры заданий 2– 5).

Алгоритм определения геометрии молекул методом ВС:

а. Определить центральный атом и количество σ-связей с концевыми атомами.

б. Составить электронные конфигурации всех атомов, входящих в состав молекулы и графические изображения внешних электронных уровней.

в. Согласно принципам метода ВС на образование каждой связи нужна пара электронов, в общем случае, по одному от каждого атома. Если неспаренных электронов центральному атому недостаточно, следует предположить возбуждение атома с переходом одного из пары электронов на более высокий энергетический уровень.

г. Предположить необходимость и тип гибридизации с учетом всех связей и, для элементов первого периода, неспаренных электронов.

д. Опираясь на вышеизложенные умозаключения изобразить электронные орбитали (гибридные или нет) всех атомов в молекуле и их перекрывание. Сделать вывод о геометрии молекулы и приблизительной величине валентных углов.

е. Определить степень полярности связи исходя из значений электроотрицательностей атомов (табл.6) Определить наличие дипольного момента исходя из расположения центров тяжести положительного и отрицательного зарядов и/или симметрии молекулы.

Таблица 6. Значения электроотрицательности некоторых элементов по Полингу


Примеры заданий

Задание 1 . Опишите методом ВС химическую связь в молекуле СО.

Решение (рис.25)

а. Составить электронные конфигурации всех атомов, входящих в состав молекулы.

б. Для образования связи необходимо создать обобществленные электронные пары

Рисунок 25. Схема образования связи в молекуле СО (без гибридизации орбиталей)

Вывод: В молекуле СО – тройная связь С≡О

Для молекулы СО можно предположить наличие sp -гибридизации орбиталей обоих атомов (рис.26). Спаренные электроны, не участвующие в образовании связи находятся на sp -гибридной орбитали.

Рисунок 26. Схема образования связи в молекуле СО (с учетом гибридизации орбиталей)

Задание 2. На основе метода ВС предположить пространственное строение молекулы BeH 2 и определить является ли молекула диполем.

Решение задачи представлено в таблице 7.

Таблица 7. Определение геометрии молекулы BeH 2

Электронная конфигурация Примечания
а. Центральный атом – бериллий. Ему необходимо образовать две ϭ-связи с атомами водорода
б. H: 1s 1 Be: 2s 2 У атома водорода есть неспаренный электрон, у атома бериллия все электроны спарены, его необходимо перевести в возбужденное состояние
в. H: 1s 1 Be*: 2s 1 2p 1 Если бы один атом водорода связывался с бериллием за счет 2s -электрона бериллия, а другой – за счет 2p -электрона бериллия, то молекула не обладала бы симметрией, что энергетически не оправдано, а связи Be–Н не были бы равноценными.
г. H: 1s 1 Be*: 2(sp ) 2 Следует предположить наличие sp -гибридизации
д. Две sp -гибридные орбитали располагаются под углом 180°, молекула BeH 2 – линейная
е. Электроотицательности χ Н =2,1, χ Be =1,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому водорода, на нем появляется небольшой отрицательный заряд δ–. На атоме бериллия δ+. Так как центры тяжести положительного и отрицательного заряда совпадают (она симметрична), молекула не является диполем.

Аналогичные рассуждения помогут описать геометрию молекул с sp 2 - и sp 3 -гибридными орбиталями (табл.8).

Таблица 8. Геометрия молекул BF 3 и СН 4

Задание 3. На основе метода ВС предположить пространственное строение молекулы H 2 О и определить является ли молекула диполем. Возможно два решения, они представлены в таблицах 9 и 10.

Таблица 9. Определение геометрии молекулы H 2 O (без гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а.
б. H: 1s 1 O: 2s 2 2p 4
в. Неспаренных электронов достаточно для образования двух ϭ-связей с атомами водорода.
г. Гибридизацией можно пренебречь
д.
е.

Таким образом, молекула воду, должна иметь валентный угол около 90°. Однако угол между связями примерно 104°.

Это можно объяснить

1) отталкиванием, близко расположенных друг к другу водородных атомов.

2) Гибридизацией орбиталей (табл. 10).

Таблица 10. Определение геометрии молекулы H 2 O (с учетом гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а. Центральный атом – кислород. Ему необходимо образовать две ϭ-связи с атомами водорода.
б. H: 1s 1 O: 2s 2 2p 4 У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
в. У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
г. Угол в 104° позволяет предположить наличие sp 3 -гибридизации.
д. Две sp 3 -гибридные орбитали располагаются под углом примерно 109°, молекула H 2 O по форме близка к тетраэдру, уменьшение валентного угла объясняется влиянием электронной не связывающей пары.
е. Электроотицательности χ Н =2,1, χ О =3,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому кислорода, на нем появляется небольшой отрицательный заряд 2δ– На атоме водорода δ+. Так как центры тяжести положительного и отрицательного заряда не совпадают (она не симметрична), молекула является диполем.

Аналогичные рассуждения позволяют объяснить валентные углы в молекуле аммиака NH 3 . Гибридизацию с участием неподеленных электронных пар, обычно предполагают только для орбиталей атомов элементов II периода. Валентные углы в молекулах H 2 S = 92°, H 2 Se = 91°, H 2 Te = 89°. То же самое наблюдается в ряду NH 3 , РH 3 , AsH 3 . При описании геометрии этих молекул, традиционно, или не прибегают к представлениям о гибридизации, или объясняют уменьшение тетраэдрического угла возрастающим влиянием неподеленной пары.

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.