Referat. Всемирное тяготение. Почему гравитация в космосе не такая, как на земле

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

F т =GMm/R 2

где М - масса Земли; R - радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

g=F т /m=GM/R 2 .

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

F т =mg

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

g=GM/(R+h) 2.

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести F т только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Р=F т =mg.

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести F т =mg и сила упругости F yп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил F т и F уп дает равнодействующую, вызывающую ускорение тела, т. е.

F т + F уп =mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-F yп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы F т и F уп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

P=m(g-a)

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости . Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

XVI - XVII века многие по праву называют одним из самых славных периодов в Именно в это время были во многом заложены те основы, без которых дальнейшее развитие этой науки было бы попросту немыслимым. Коперник, Галилей, Кеплер проделали огромную работу, чтобы заявить о физике как о науке, которая может дать ответ практически на любой вопрос. Особняком в целой череде открытий стоит закон всемирного тяготения, окончательная формулировка которого принадлежит выдающемуся английскому ученому Исааку Ньютону.

Основное значение работ этого ученого заключалось не в открытии им силы всемирного тяготения - о наличии этой величины еще до Ньютона говорил и Галилей, и Кеплер, а в том, что он первым доказал, что и на Земле, и в космическом пространстве действуют одни и те же силы взаимодействия между телами.

Ньютон на практике подтвердил и теоретически обосновал тот факт, что абсолютно все тела во Вселенной, в том числе и те, которые располагаются на Земле, взаимодействуют друг с другом. Это взаимодействие получило название гравитационного, в то время как сам процесс всемирного тяготения - гравитации.
Данное взаимодействие возникает между телами потому, что существует особый, непохожий на другие, вид материи, который в науке получил название гравитационного поля. Это поле существует и действует вокруг абсолютно любого предмета, при этом никакой защиты от него не существует, так как он обладает ни на что не похожей способностью проникать в любые материалы.

Сила всемирного тяготения, определение и формулировку которой дал находится в прямой зависимости от произведения масс взаимодействующих тел, и в обратной зависимости от квадрата расстояния междуэтими объектами. Согласно мнению Ньютона, неопровержимо подтвержденного практическими изысканиями, сила всемирного тяготения находится по следующей формуле:

В ней особое значение принадлежит гравитационной постоянной G, которая приблизительно равна 6,67*10-11(Н*м2)/кг2.

Сила всемирного тяготения, с которой тела притягиваются к Земле, представляет собой частный случай закона Ньютона и называется силой тяжести. В данном случае гравитационной постоянной и массой самой Земли можно пренебречь, поэтому формула нахождения силы тяжести будет выглядеть так:

Здесь g - не что иное, как ускорение числовое значение которого примерно равно 9,8 м/с2.

Закон Ньютона объясняет не только процессы, происходящие непосредственно на Земле, он дает ответ на множество вопросов, связанных с устройством всей Солнечной системы. В частности, сила всемирного тяготения между оказывает решающее влияние на движение планет по своим орбитам. Теоретическое описание этого движения было дано еще Кеплером, однако обоснование его стало возможно только после того, как Ньютон сформулировал свой знаменитый закон.

Сам Ньютон связывал явления земной и внеземной гравитации на простом примере: при выстреле из летит не прямо, а по дугообразной траектории. При этом при увеличении заряда пороха и массы ядра последнее будет улетать все дальше и дальше. Наконец, если предположить, что возможно достать столько пороха и сконструировать такую пушку, чтобы ядро облетело вокруг Земного шара, то, проделав это движение, оно не остановится, а будет продолжать свое круговое (эллипсовидное) движение, превратившись в искусственный Как следствие, сила всемирного тяготения одинакова по своей природе и на Земле, и в космическом пространстве.


В этом параграфе мы расскажем об удивительной догадке Ньютона, приведшей к открытию закона всемирного тяготения.
Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со стороны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, на-правленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.
Догадка Ньютона
Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»: «Брошенный горизонтально камень отклонится
, \\
1
/ /
У
Рис. 3.2
под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, ! то он упадет дальше» (рис. 3.2). Про- J должая эти рассуждения, Ньютон \ приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».
Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.
Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца - это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?
Зависимость силы тяготения от массы тел
В § 1.23 говорилось о свободном падении тел. Упоминались опыты Галилея, доказавшие, что Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. Именно в этом случае ускорение свободного падения, равное отношению силы земного притяжения к массе тела, является постоянной величиной.
Действительно, в этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а уско-
F
рение, которое равно отношению - , останется неизменным.
Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует. Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела.
Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:
F - тут2. (3.2.1)
От чего еще зависит сила тяготения, действующая на данное тело со стороны другого тела?
Зависимость силы тяготения от расстояния между телами
Можно предположить, что сила тяготения должна зависеть от расстояния между телами. Чтобы проверить правильность этого предположения и найти зависимость силы тяготения от расстояния между телами, Ньютон обратился к движению спутника Земли - Луны. Ее движение было в те времена изучено гораздо точнее, чем движение планет.
Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле
л 2
а = - Тг
где В - радиус лунной орбиты, равный примерно 60 радиусам Земли, Т = 27 сут 7 ч 43 мин = 2,4 106 с - период обращения Луны вокруг Земли. Учитывая, что радиус Земли R3 = 6,4 106 м, получим, что центростремительное ускорение Луны равно:
2 6 4к 60 ¦ 6,4 ¦ 10
М „ „„„. , о
а = 2 ~ 0,0027 м/с*.
(2,4 ¦ 106 с)
Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с2) приблизительно в 3600 = 602 раз.
Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 602 раз.
Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли:
ci
а = -к, (3.2.2)
R
где Сj - постоянный коэффициент, одинаковый для всех тел.
Законы Кеплера
Исследование движения планет показало, что это движение вызвано силой притяжения к Солнцу. Используя тщательные многолетние наблюдения датского астронома Тихо Браге, не-мецкий ученый Иоганн Кеплер в начале XVII в. установил ки-нематические законы движения планет - так называемые законы Кеплера.
Первый закон Кеплера
Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
Эллипсом (рис. 3.3) называется плоская замкнутая кривая, сумма расстояний от любой точки которой до двух фиксированных точек, называемых фокусами, постоянна. Эта сумма расстояний равна длине большой оси АВ эллипса, т. е.
FгР + F2P = 2b,
где Fl и F2 - фокусы эллипса, a b = ^^ - его большая полуось; О - центр эллипса. Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка - р

В
Рис. 3.4
«2
В А А афелием. Если Солнце находится в фокусе Fr (см. рис. 3.3), то точка А - перигелий, а точка В - афелий.
Второй закон Кеплера
Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Так, если заштрихованные секторы (рис. 3.4) имеют одинаковые площади, то пути si> s2> s3 будут пройдены планетой за равные промежутки времени. Из рисунка видно, что Sj > s2. Следовательно, линейная скорость движения планеты в различных точках ее орбиты неодинакова. В перигелии скорость планеты наибольшая, в афе-лии - наименьшая.
Третий закон Кеплера
Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Обозначив большую полуось орбиты и период обращения одной из планет через Ьх и Tv а другой - через Ь2 и Т2, третий закон Кеплера можно записать так:

Из этой формулы видно, что чем дальше планета от Солнца, тем больше ее период обращения вокруг Солнца.
На основании законов Кеплера можно сделать определенные выводы об ускорениях, сообщаемых планетам Солнцем. Мы для простоты будем считать орбиты не эллиптическими, а круговыми. Для планет Солнечной системы эта замена не является слишком грубым приближением.
Тогда сила притяжения со стороны Солнца в этом приближе-нии должна быть направлена для всех планет к центру Солнца.
Если через Т обозначить периоды обращения планет, а через R - радиусы их орбит, то, согласно третьему закону Кеплера, для двух планет можно записать
т\ Л? Т2 R2
Нормальное ускорение при движении по окружности а = со2R. Поэтому отношение ускорений планет
Q-i ГлД.
7Г=-2~- (3-2-5)
2 t:r0
Используя уравнение (3.2.4), получим
Т2
Так как третий закон Кеплера справедлив для всех планет, .то ускорение каждой планеты обратно пропорционально квадрату расстояния ее до Солнца:
О о
а = -|. (3.2.6)
ВТ
Постоянная С2 одинакова для всех планет, но не совпадает с постоянной С2 в формуле для ускорения, сообщаемого телам земным шаром.
Выражения (3.2.2) и (3.2.6) показывают, что сила тяготения в обоих случаях (притяжение к Земле и притяжение к Солнцу) сообщает всем телам ускорение, не зависящее от их массы и убывающее обратно пропорционально квадрату расстояния между ними:
F~a~-2. (3.2.7)
R
Закон всемирного тяготения
Существование зависимостей (3.2.1) и (3.2.7) означает, что сила всемирного тяготения 12
ТП.Л Ш
F ~
R2? ТТЬ-і ТПп
F = G
В 1667 г. Ньютон окончательно сформулировал закон все-мирного тяготения:
(3.2.8) R
Сила взаимного притяжения двух тел прямо пропорци-ональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Коэффициент про-порциональности G называется гравитационной постоянной.
Взаимодействие точечных и протяженных тел
Закон всемирного тяготения (3.2.8) справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.5). Подобного рода силы называются центральными.
Для нахождения силы тяготения, действующей на данное тело со стороны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно раз-деляют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3.6). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.
Есть, однако, один практически важный случай, когда формула (3.2.8) применима к протяженным телам. Можно дока-
m^
Fi Рис. 3.5 Рис. 3.6
зать, что сферические тела, плот-ность которых зависит только от расстояний до их центров, при рас-стояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (3.2.8). В этом слу-чае R - это расстояние между центрами шаров.
И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (3.2.8) следует понимать расстояние от данного тела до центра Земли.
Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.
? 1. Расстояние от Марса до Солнца на 52% больше расстояния от Земли до Солнца. Какова продолжительность года на Марсе? 2. Как изменится сила притяжения между шарами, если алюминиевые шары (рис. 3.7) заменить стальными шарами той же массы? " того же объема?

Сила всемирного тяготения

Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле. Только ли Земля обладает свойством притягивать к себе тела, находящиеся вблизи ее поверхности? В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.

Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?

Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметного значения только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.

"ДЫРЫ" В ПРОСТРАНСТВЕ И ВРЕМЕНИ

Черные дыры - это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет. Современная наука раскрыла связь времени с физическими процессами, позвонило "прощупать" первые звенья цепи времени в прошлом и проследить за ее свойствами в далеком будущем.

Роль масс притягивающихся тел

Ускорение свободного падения отличаются той любопытной особенностью, что оно в данном месте одинаково для всех тел, для тел любой массы. Как объяснить это странное свойство?

Единственное объяснение, которое можно найти тому, что ускорение не зависит от массы тела, заключается в том, что сила F, с которой Земля притягивает тело, пропорционально его массе m.

Действительно, в этом случае увеличение массы m, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно отношению F/m, останется неизменным. Ньютон и сделал этот единственно правильный вывод: сила всемирного тяготения пропорционально массе того тела, на которое она действует.

Но ведь тела притягиваются взаимно, причем силы взаимодействия всегда одной природы. Следовательно, и сила, с которой тело притягивает Землю, пропорциональна массе Земли. По третьему закону Ньютона эти силы равны по модулю. Значит, если одна из них пропорциональна массе Земли, то и равная ей другая сила также пропорциональна массе Земли. От сюда следует, что сила взаимного притяжения пропорциональна массам обоих взаимодействующих тел. А это значит, что она пропорциональна произведению масс обоих тел.

ПОЧЕМУ ГРАВИТАЦИЯ В КОСМОСЕ НЕ ТАКАЯ, КАК НА ЗЕМЛЕ?

Каждый предмет во Вселенной воздействует на другой предмет, они притягивают друг друга. Сила притяжения, или гравитация, зависит от двух факторов.

Во-первых, это зависит от того, сколько вещества содержит объект, тело, предмет. Чем больше масса вещества тела, тем сильней гравитация. Если тело обладает очень небольшой массой, его гравитация мала. Например, масса Земли во много раз больше массы Луны, поэтому земля имеет большую силу тяжести, чем Луна.

Во-вторых, сила тяжести зависит от расстояниями между телами. Чем ближе тела находятся друг к другу, тем сила притяжения больше. Чем они дальше друг от друга, тем гравитация меньше.

По какому закону вы собираетесь меня повесить?
- А мы вешаем всех по одному закону - закону Всемирного Тяготения.

Закон всемирного тяготения

Явление гравитации - это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

Математически мы можем выразить этот великий закон формулой


Тяготение действует на огромных расстояниях во Вселенной . Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле. Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения. Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.

Вспомним об ускорении свободного падения . Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.

Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.

Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?

Направление силы притяжения

Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы "берет" тело B и тянет к себе. Тело В "проделывает" то же самое с телом А.



Каждое тело притягивается Землей. Земля "берет" тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.

Главное запомнить

Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.

Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?

Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) - английский физик и химик) при помощи прибора, который показан на рисунке. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить - слегка, потому что силы притяжения между обычными предметами очень слабы. При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G .

Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт "взвешиванием Земли".

Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона) . Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы. Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, - свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна. Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.

Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов. Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет. Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.