Основные тригонометрические углы. Тригонометрические уравнения — формулы, решения, примеры

В самом начале этой статьи мы с Вами рассмотрели понятие тригонометрических функций. Основное назначение их назначение – это изучение основ тригонометрии и исследование периодических процессов. И тригонометрический круг мы не зря рисовали, потому что в большинстве случаев тригонометрические функции определяются, как отношение сторон треугольника или его определенных отрезков в единичной окружности. Так же я упоминал о неоспоримо огромном значении тригонометрии в современной жизни. Но наука не стоит на месте, в результате мы можем значительно расширить область применения тригонометрии и перенести ее положения на вещественные, а иногда и на комплексные числа.

Формулы тригонометрии бывают нескольких видов. Рассмотрим их по порядку.

  1. Соотношения тригонометрических функций одного и того же угла

  2. Здесь мы подошли к рассмотрению такого понятия как основные тригонометрические тождества .

    Тригонометрическое тождество - это равенство, которое состоит из тригонометрических соотношений и которое выполняется для всех значений величин углов, которые входят в него.

    Рассмотрим наиболее важные тригонометрические тождества и их доказательства:

    Первое тождество вытекает из самого определения тангенс.

    Возьмем прямоугольный треугольник, в котором имеется острый угол х при вершине А.

    Для доказательства тождеств необходимо воспользоваться теоремой Пифагора:

    (ВС) 2 + (АС) 2 = (АВ) 2

    Теперь разделим на (АВ) 2 обе части равенства и припомнив определения sin и cos угла, мы получаем второе тождество:

    (ВС) 2 /(AB) 2 + (AC) 2 /(AB) 2 = 1

    sin x = (BC)/(AB)

    cos x = (AC)/(AB)

    sin 2 x + cos 2 x = 1

    Для доказательства третьего и четвертого тождеств воспользуемся предыдущим доказательством.

    Для этого обе части второго тождества разделим на cos 2 x:

    sin 2 x/ cos 2 x + cos 2 x/ cos 2 x = 1/ cos 2 x

    sin 2 x/ cos 2 x + 1 = 1/ cos 2 x

    Исходя из первого тождества tg x = sin х /cos x получаем третье:

    1 + tg 2 x = 1/cos 2 x

    Теперь разделим второе тождество на sin 2 x:

    sin 2 x/ sin 2 x + cos 2 x/ sin 2 x = 1/ sin 2 x

    1+ cos 2 x/ sin 2 x = 1/ sin 2 x

    cos 2 x/ sin 2 x есть не что иное, как 1/tg 2 x, поэтому получаем четвертое тождество:

    1 + 1/tg 2 x = 1/sin 2 x

    Пришла пора вспомнить теорему о сумме внутренних углов треугольника, которая гласит, что сумма углов треугольника = 180 0 . Получается, что при вершине В треугольника находится угол, величина которого 180 0 – 90 0 – х = 90 0 – х.

    Опять вспомним определения для sin и cos и получаем пятое и шестое тождества:

    sin x = (BC)/(AB)

    cos(90 0 – x) = (BC)/(AB)

    cos(90 0 – x) = sin x

    Теперь выполним следующее:

    cos x = (AC)/(AB)

    sin(90 0 – x) = (AC)/(AB)

    sin(90 0 – x) = cos x

    Как видите – здесь все элементарно.

    Существуют и другие тождества, которые используются при решении математических тождеств, я приведу их просто в виде справочной информации, потому как все они проистекают из вышерассмотренных.

  3. Выражения тригонометрических функций друг через друга

    (выбор знака перед корнем определяется тем, в какой из четвертей круга расположен угол?)

  4. Далее следуют формулы сложения и вычитания углов:

  5. Формулы двойных, тройных и половинных углов.

    Замечу, что все они проистекают из предыдущих формул.

  6. sin 2х =2sin х*cos х

    cos 2х =cos 2 х -sin 2 х =1-2sin 2 х =2cos 2 х -1

    tg 2x = 2tgx/(1 - tg 2 x)

    сtg 2x = (сtg 2 x - 1) /2сtg x

    sin3х =3sin х - 4sin 3 х

    cos3х =4cos 3 х - 3cos х

    tg 3x = (3tgx – tg 3 x) /(1 - 3tg 2 x)

    сtg 3x = (сtg 3 x – 3сtg x) /(3сtg 2 x - 1)

  7. Формулы преобразования тригонометрических выражений:

В статье подробно рассказывается об основных тригонометрических тождествах.Эти равенства устанавливают связь между sin , cos , t g , c t g заданного угла. При известной одной функции можно через нее найти другую.

Тригонометрические тождества для рассмотрения в денной статье. Ниже покажем пример их выведения с объяснением.

sin 2 α + cos 2 α = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α

Yandex.RTB R-A-339285-1

Поговорим о важном тригонометрическом тождестве, которое считается основой основ в тригонометрии.

sin 2 α + cos 2 α = 1

Заданные равенства t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α выводят из основного путем деления обеих частей на sin 2 α и cos 2 α . После чего получаем t g α = sin α cos α , c t g α = cos α sin α и t g α · c t g α = 1 - это следствие определений синуса, косинуса, тангенса и котангенса.

Равенство sin 2 α + cos 2 α = 1 является основным тригонометрическим тождеством. Для его доказательства необходимо обратиться к теме с единичной окружностью.

Пусть даны координаты точки А (1 , 0) , которая после поворота на угол α становится в точку А 1 . По определению sin и cos точка А 1 получит координаты (cos α , sin α) . Так как А 1 находится в пределах единичной окружности, значит, координаты должны удовлетворят условию x 2 + y 2 = 1 этой окружности. Выражение cos 2 α + sin 2 α = 1 должно быть справедливым. Для этого необходимо доказать основное тригонометрическое тождество для всех углов поворота α .

В тригонометрии выражение sin 2 α + cos 2 α = 1 применяют как теорему Пифагора в тригонометрии. Для этого рассмотрим подробное доказательство.

Используя единичную окружность, поворачиваем точку А с координатами (1 , 0) вокруг центральной точки О на угол α . После поворота точка меняет координаты и становится равной А 1 (х, у) . Опускаем перпендикулярную прямую А 1 Н на О х из точки А 1 .

На рисунке отлично видно, что образовался прямоугольный треугольник О А 1 Н. По модулю катеты О А 1 Н и О Н равные, запись примет такой вид: | А 1 H | = | у | , | О Н | = | х | . Гипотенуза О А 1 имеет значение равное радиусу единичной окружности, | О А 1 | = 1 . Используя данное выражение, можем записать равенство по теореме Пифагора: | А 1 Н | 2 + | О Н | 2 = | О А 1 | 2 . Это равенство запишем как | y | 2 + | x | 2 = 1 2 , что означает y 2 + x 2 = 1 .

Используя определение sin α = y и cos α = x , подставим данные угла вместо координат точек и перейдем к неравенству sin 2 α + cos 2 α = 1 .

Основная связь между sin и cos угла возможна через данное тригонометрическое тождество. Таким образом, можно считать sin угла с известным cos и наоборот. Чтобы выполнить это, необходимо разрешать sin 2 α + cos 2 = 1 относительно sin и cos , тогда получим выражения вида sin α = ± 1 - cos 2 α и cos α = ± 1 - sin 2 α соответственно. Величина угла α определяет знак перед корнем выражения. Для подробного выяснения необходимо прочитать раздел вычисление синуса, косинуса, тангенса и котангенса с использованием тригонометрических формул.

Чаще всего основную формулу применяют для преобразований или упрощений тригонометрических выражений. Имеется возможность заменять сумму квадратов синуса и косинуса на 1 . Подстановка тождества может быть как в прямом, так и обратном порядке: единицу заменяют на выражение суммы квадратов синуса и косинуса.

Тангенс и котангенс через синус и косинус

Из определения косинуса и синуса, тангенса и котангенса видно, что они взаимосвязаны друг с другом, что позволяет отдельно преобразовывать необходимые величины.

t g α = sin α cos α c t g α = cos α sin α

Из определения синус является ординатой у, а косинус – абсциссой x . Тангенс – это и есть отношения ординаты и абсциссы. Таким образом имеем:

t g α = y x = sin α cos α , а выражение котангенса имеет обратное значение, то есть

c t g α = x y = cos α sin α .

Отсюда следует, что полученные тождества t g α = sin α cos α и c t g α = cos α sin α задаются с помощью sin и cos углов. Тангенс считаются отношением синуса к косинусу угла между ними, а котангенс наоборот.

Отметим, что t g α = sin α cos α и c t g α = cos α sin α верны для любого значение угла α , значения которого входят в диапазон. Из формулы t g α = sin α cos α значение угла α отлично от π 2 + π · z , а c t g α = cos α sin α принимает значение угла α , отличные от π · z , z принимает значение любого целого числа.

Связь между тангенсом и котангенсом

Имеется формула, которая показывает связь между углами через тангенс и котангенс. Данное тригонометрическое тождество является важным в тригонометрии и обозначается как t g α · c t g α = 1 . Оно имеет смысл при α с любым значением, кроме π 2 · z , иначе функции будут не определены.

Формула t g α · c t g α = 1 имеет свои особенности в доказательстве. Из определения мы имеем, что t g α = y x и c t g α = x y , отсюда получаем t g α · c t g α = y x · x y = 1 . Преобразовав выражение и подставив t g α = sin α cos α и c t g α = cos α sin α , получим t g α · c t g α = sin α cos α · cos α sin α = 1 .

Тогда выражение тангенса и котангенса имеет смысл того, когда в итоге получаем взаимно обратные числа.

Тангенс и косинус, котангенс и синус

Преобразовав основные тождества, приходим к выводу, что тангенс связан через косинус, а котангенс через синус. Это видно по формулам t g 2 α + 1 = 1 cos 2 α , 1 + c t g 2 α = 1 sin 2 α .

Определение звучит так: сумма квадрата тангенса угла и 1 приравнивается к дроби, где в числителе имеем 1 , а в знаменателе квадрат косинуса данного угла, а сумма квадрата котангенса угла наоборот. Благодаря тригонометрическому тождеству sin 2 α + cos 2 α = 1 , можно разделить соответствующие стороны на cos 2 α и получить t g 2 α + 1 = 1 cos 2 α , где значение cos 2 α не должно равняться нулю. При делении на sin 2 α получим тождество 1 + c t g 2 α = 1 sin 2 α , где значение sin 2 α не должно равняться нулю.

Из приведенных выражений получили, что тождество t g 2 α + 1 = 1 cos 2 α верно при всех значениях угла α , не принадлежащих π 2 + π · z , а 1 + c t g 2 α = 1 sin 2 α при значениях α , не принадлежащих промежутку π · z .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

tg \alpha = \frac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

tg \alpha \cdot ctg \alpha = 1

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

tg \alpha = \frac{\sin \alpha}{\cos \alpha},\enspace

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой y является синус, а абсциссой x — косинус. Тогда тангенс будет равен отношению \frac{y}{x}=\frac{\sin \alpha}{\cos \alpha} , а отношение \frac{x}{y}=\frac{\cos \alpha}{\sin \alpha} — будет являться котангенсом.

Добавим, что только для таких углов \alpha , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , ctg \alpha=\frac{\cos \alpha}{\sin \alpha} .

Например: tg \alpha = \frac{\sin \alpha}{\cos \alpha} является справедливой для углов \alpha , которые отличны от \frac{\pi}{2}+\pi z , а ctg \alpha=\frac{\cos \alpha}{\sin \alpha} — для угла \alpha , отличного от \pi z , z — является целым числом.

Зависимость между тангенсом и котангенсом

tg \alpha \cdot ctg \alpha=1

Данное тождество справедливо только для таких углов \alpha , которые отличны от \frac{\pi}{2} z . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что tg \alpha = \frac{y}{x} , а ctg \alpha=\frac{x}{y} . Отсюда следует, что tg \alpha \cdot ctg \alpha = \frac{y}{x} \cdot \frac{x}{y}=1 . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

tg^{2} \alpha + 1=\frac{1}{\cos^{2} \alpha} — сумма квадрата тангенса угла \alpha и 1 , равна обратному квадрату косинуса этого угла. Данное тождество справедливо для всех \alpha , отличных от \frac{\pi}{2}+ \pi z .

1+ctg^{2} \alpha=\frac{1}{\sin^{2}\alpha} — сумма 1 и квадрат котангенса угла \alpha , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \alpha , отличного от \pi z .

Примеры с решениями задач на использование тригонометрических тождеств

Пример 1

Найдите \sin \alpha и tg \alpha , если \cos \alpha=-\frac12 и \frac{\pi}{2} < \alpha < \pi ;

Показать решение

Решение

Функции \sin \alpha и \cos \alpha связывает формула \sin^{2}\alpha + \cos^{2} \alpha = 1 . Подставив в эту формулу \cos \alpha = -\frac12 , получим:

\sin^{2}\alpha + \left (-\frac12 \right)^2 = 1

Это уравнение имеет 2 решения:

\sin \alpha = \pm \sqrt{1-\frac14} = \pm \frac{\sqrt 3}{2}

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти синус положителен, поэтому \sin \alpha = \frac{\sqrt 3}{2} .

Для того, чтобы найти tg \alpha , воспользуемся формулой tg \alpha = \frac{\sin \alpha}{\cos \alpha}

tg \alpha = \frac{\sqrt 3}{2} : \frac12 = \sqrt 3

Пример 2

Найдите \cos \alpha и ctg \alpha , если и \frac{\pi}{2} < \alpha < \pi .

Показать решение

Решение

Подставив в формулу \sin^{2}\alpha + \cos^{2} \alpha = 1 данное по условию число \sin \alpha=\frac{\sqrt3}{2} , получаем \left (\frac{\sqrt3}{2}\right)^{2} + \cos^{2} \alpha = 1 . Это уравнение имеет два решения \cos \alpha = \pm \sqrt{1-\frac34}=\pm\sqrt\frac14 .

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти косинус отрицателен, поэтому \cos \alpha = -\sqrt\frac14=-\frac12 .

Для того, чтобы найти ctg \alpha , воспользуемся формулой ctg \alpha = \frac{\cos \alpha}{\sin \alpha} . Соответствующие величины нам известны.

ctg \alpha = -\frac12: \frac{\sqrt3}{2} = -\frac{1}{\sqrt 3} .

Основные тригонометрические тождества.

secα читают: «секанс альфа». Это число, обратное косинусу альфа.

соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

а) 1 – sin 2 α; б) cos 2 α – 1; в) (1 – cosα)(1+cosα); г) sin 2 αcosα – cosα; д) sin 2 α+1+cos 2 α;

е) sin 4 α+2sin 2 αcos 2 α+cos 4 α; ж) tg 2 α – sin 2 αtg 2 α; з) ctg 2 αcos 2 α – ctg 2 α; и) cos 2 α+tg 2 αcos 2 α.

а) 1 – sin 2 α = cos 2 α по формуле 1) ;

б) cos 2 α – 1 =- (1 – cos 2 α) = -sin 2 α также применили формулу 1) ;

в) (1 – cosα)(1+cosα) = 1 – cos 2 α = sin 2 α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a 2 – b 2 , а затем формулу 1) ;

г) sin 2 αcosα – cosα. Вынесем общий множитель за скобки.

sin 2 αcosα – cosα = cosα(sin 2 α – 1) = -cosα(1 – sin 2 α) = -cosα cos 2 α = -cos 3 α. Вы, конечно, уже заметили, что так как 1 – sin 2 α = cos 2 α, то sin 2 α – 1 = -cos 2 α. Точно так же, если 1 – cos 2 α = sin 2 α, то cos 2 α – 1 = -sin 2 α.

д ) sin 2 α+1+cos 2 α = (sin 2 α+cos 2 α)+1 = 1+1 = 2;

е ) sin 4 α+2sin 2 αcos 2 α+cos 4 α. Имеем: квадрат выражения sin 2 α плюс удвоенное произведение sin 2 α на cos 2 α и плюс квадрат второго выражения cos 2 α. Применим формулу квадрата суммы двух выражений: a 2 +2ab+b 2 =(a+b) 2 . Далее применим формулу 1) . Получим: sin 4 α+2sin 2 αcos 2 α+cos 4 α = (sin 2 α+cos 2 α) 2 = 1 2 = 1;

ж) tg 2 α – sin 2 αtg 2 α = tg 2 α(1 – sin 2 α) = tg 2 α cos 2 α = sin 2 α. Применили формулу 1) , а затем формулу 2) .

Запомните: tg α ∙ cos α = sin α.

Аналогично, используя формулу 3) можно получить: ctg α ∙ sin α = cos α. Запомнить!

з) ctg 2 αcos 2 α – ctg 2 α = ctg 2 α(cos 2 α – 1) = ctg 2 α (-sin 2 α) = -cos 2 α.

и) cos 2 α+tg 2 αcos 2 α = cos 2 α(1+tg 2 α) = 1. Мы вначале вынесли общий множитель за скобки, а содержимое скобок упростили по формуле 7).

Преобразовать выражение: