Большая энциклопедия нефти и газа. Антропогенные факторы и их влияние на природную среду. Виды воздействия особых факторов на окружающую среду

Каждый вид воздействия характеризуется своим набором факторов. Для климатических воздействий это температура, влажность, давление, скорость ветра и т.д. Все воздействующие факторы по их происхождению разделяют на две группы: объективные и субъективные (рис. 4).

Объективные факторы характеризуют воздействие внешних условий, в которых осуществляют хранение, транспортировку и эксплуатацию ЭУ. Различают прямые и косвенные объективные факторы. Прямые характеризуют естественные воздействия, косвенные – воздействия на ЭУ объекта. Они могут находиться в сложном взаимодействии. Например, поверхность ЭУ, соприкасающаяся при быстром движении с нейтральными частицами, образующимися во время пылевых бурь, метелей, плавания в штормовую погоду, полётов в дождь и снег, электризуется (прямые объективные факторы). Нейтральные частицы приобретают положительный заряд, а ЭУ – отрицательный (возникающий заряд пропорционален кубу скорости относительного движения частиц и ЭУ ). При напряжённости поля накопленного заряда 450…600 В/см возникает "коронный" разряд, который приводит к искажению электрического сигнала ЭУ (косвенные факторы).

Рис. 4. Классификация воздействующих факторов

Тепловые воздействия проявляются не только как постоянно действующие температуры, но и как перепады температур. Резкому перепаду температур подвергаются ЭУ, расположенные на объектах, быстро перемещающихся по вертикали (летательные аппараты, батискафы, глубинные буры и др.) Например, за короткий промежуток времени температура ЭУ, установленных на самолёте может снижаться от +50 до -40 0 С (набор высоты), а затем повышаться от -40 до +100°С (пикирование). Одновременно меняются влажность и давление. При дозвуковых скоростях скорость изменения температуры ЭУ составляет 5…7° С/мин, при сверхзвуковых – до 30° С/мин. Быстрое изменение температуры возможно при включении и выключении электрических нагрузок ЭУ, при движении объекта через тепловые зоны или зоны инфракрасного излучения и т.д.



Действие проникающей (ионизирующей) радиации возможно при использовании ЭУ на космических объектах, высотных летательных аппаратах, атомных электростанциях, в зонах, заражённых радиоактивными веществами.

Субъективные факторы характеризуют человеческую деятельность на этапах проектирования, производства и эксплуатации. Результат их воздействия – ошибки проектирования, производства и эксплуатации, приводящие к дефектам изделий, которые при воздействии объективных факторов приводят к потере работоспособности ЭУ. K ошибкам проектирования относятся не только недостатки электрических и конструктивно-технологических решений, но и переоценка возможностей операторов, обслуживающих спроектированные ЭУ, недостаточно эффективная система контроля работоспособности изделий. Ошибки производства обусловлены нарушениями ТП, применением некачественных комплектующих и материалов, отсутствием жёсткого контроля на различных стадиях производства ЭУ. Ошибки эксплуатации связаны с нарушениями обслуживающим персоналом эксплуатационных требований, предусмотренных соответствующими документами.

Влияние объективных и субъективных факторов на работоспособность ЭУ различно. Результат воздействия объективных факторов зависит от их числовых значений. Из-за наличия субъективных факторов снижается устойчивость изделий к воздействию объективных факторов, в результате уменьшаются их предельно допустимые значения, следовательно, снижаются качество и надёжность ЭУ. Негативные последствия влияния субъективных факторов часто скрыты от разработчиков.

Климатические воздействия

Климатические воздействия при эксплуатации ЭУ подразделяют на естественные и искусственные. Естественные климатические воздействия определяются погодными условиями, включающими температуру, влажность, ветер, атмосферное давление и др. Искусственные климатические воздействия создаются при функционировании ЭУ и расположенных рядом объектов.

Формирование естественных климатических воздействий. При составлении технических условий на ЭУ и программы испытаний, естественные климатические воздействия учитывают в виде усреднённых факторов в определённых частях земной поверхности за продолжительный период времени. Совокупность усреднённых климатических воздействий называют климатом. В основе классификации климатов лежат усреднённые за много лет значения основных климатических факторов:

Экстремальной (максимальной и минимальной) температуры за год;

Максимальной абсолютной влажности воздуха;

Максимальной температуры в сочетании с относительной влажностью воздуха, равной или превышающей 95 %.

Микроклиматические условия в электронных устройствах из-за саморазогрева характеризуются более высокими значениями максимальной температуры.

Климатические факторы, влияющие на ЭУ. На работу ЭУ значительное влияние оказывает температурный режим эксплуатации; важнейшие показатели – абсолютные годовые минимумы и максимумы температуры. Основными факторами, определяющими изменение температуры, являются широта местности, степень континентальности и топографические условия. Влияние первых двух факторов обусловливает плавное изменение температуры. Топографические условия (высота над уровнем моря и форма рельефа) нарушают этот плавный ход. Под влиянием климатических факторов в ЭУ протекают сложные физико-химические процессы, изменяющие их свойства. Поэтому при конструировании необходимо располагать не только допустимыми значениями воздействующих климатических факторов, но и информацией об изменении свойств элементов при воздействии этих факторов. Из-за наличия в конструкции ЭУ частей из материалов с различными температурными коэффициентами линейного расширения опасность представляют не сами экстремальные значения температуры , а её резкие колебания . При разности температур DТ в сопряжённых частях конструкции возникают механические напряжения g =E(a 1 -a 2)DТ, где Е – модуль упругости; a 1 и a 2 – температурные коэффициенты линейного расширения материалов сопряжённых частей конструкции. При значениях g, превышающих допустимые, возможно разрушение конструкции ЭУ.

При воздействии низких температур ухудшаются механические свойства изоляционных материалов (повышается хрупкость, уменьшается эластичность, увеличивается вязкость смазочных материалов), что может вызвать снижение механической прочности и износоустойчивости. Циклические воздействия температур приводят к появлению трещин, пор и зазоров в деталях и узлах ЭУ и способствуют их росту при замерзании конденсированной влаги.

Изменение упругих свойств контактных элементов и рост пленокплёнок на их рабочих частях может привести к увеличению переходного сопротивления, возрастанию его динамической нестабильности и т.д. Изменение размеров отдельных элементов конструкции из-за теплового расширения материалов может привести к деформации, заклиниванию и даже механическим поломкам. Таким образом, для уменьшения вероятности появления отказов необходимо ограничивать длительность работы при предельных рабочих температурах.

Особенно опасна повышенная влажность окружающей среды . Это объясняется агрессивным воздействием паров воды на большинство используемых материалов, приводящим к изменению их электрофизических свойств. При влажной атмосфере на поверхности материалов образуется очень тонкая плёнка воды, причём её толщина резко возрастает с приближением относительной влажности к 90%. Адсорбция паров воды значительно больше у материалов с ионным строением. Силы притяжения полярных молекул воды к ионам значительно больше, чем к нейтральным молекулам. В зависимости от величины этих сил на поверхности материалов могут образовываться или отдельные шарообразные скопления воды, или сплошная тонкая плёнка влаги. Воздействие самой влаги вызывает незначительное ухудшение коррозионной стойкости большинства металлов. Но процесс коррозии ускоряется при загрязнениях в атмосфере, концентрация которых увеличивается при приближении к промышленным центрам и морю. Образование плёнок влаги на диэлектрических материалах даже при незначительном загрязнении поверхностей приводит к быстрой ионизации плёнок (e >1) и увеличению их проводимости. Скорость уменьшения сопротивления изоляции непостоянна. В начальный период воздействия влаги сопротивление изоляции уменьшается быстро, затем снижение замедляется. Плёнка способствует возникновению ёмкостного эффекта, из-за высокого значения диэлектрической постоянной воды. Поглощение влаги изоляционными материалами приводит не только к изменению их электрических свойств, но и ухудшению ряда механических параметров.

Группы климатов климатических воздействий и категории применения элементов ЭУ
Группа климата Минимальная температура, 0 С Максимальная температура, 0 С Максимальная температура при относительной влажности более 95%, 0 С Максимальная интенсивность дождя, мм×мин -1 Категория применения
Тёплый умеренный -20 +35 +25 Ограниченное
Холодный умеренный, тёплый умеренный, тёплый сухой -33 +40 +27
Общее
Все климаты Земли, за исключением экстремально холодного и экстремально тёплого -50 +40 +33
Универсальное
Все климаты Земли -65 +55 +33 В любой точке земного шара

* Для всех групп климатов максимальное изменение температуры воздуха за 8 часов – 40 0 С; максимальная плотность потока солнечной радиации 1125 Вт× м -2 .

В недостаточно герметизированных объёмах циклическое изменение температуры приводит к накоплению влаги внутри блоков, а при понижении температуры (например, в ночной период, при подъёме летательных аппаратов и т.п.) на элементах аппаратуры происходит конденсация влаги.

Для защиты от воздействия повышенной влажности элементы ЭУ герметизируют, используя органические полимерные материалы. Производят покрытие лаками, эмалями, обволакивание компаундами, литьевое прессование в пластмассу, герметизацию в готовые пластмассовые корпуса и т.д. Но ни один из способов герметизации не обеспечивает идеальной влагозащиты из-за микрополостей в сварных и паяных швах корпусов, а при герметизации полимерными материалами – из-за способности последних сорбировать и пропускать пары воды.

Одним из способов защиты от воздействия повышенной влажности является размещение внутри корпуса ЭУ патрона с силикагелем, соприкасающимся с наиболее тепловыделяющим элементом. При этом пористый силикагель с высокой сорбирующей способностью во время остывания и понижения температуры внутри корпуса поглощает влагу, а при разогреве тепловыделяющего элемента силикагель выделяет влагу, которая удаляется из корпуса через вентиляционные отверстия.

Пониженное атмосферное давление снижает электрическую прочность воздушного промежутка, создавая благоприятные условия для электрического пробоя воздуха или перекрытия по поверхности электронных элементов. Возникающая при этом ионизация воздуха способствует ускоренному старению изоляционных и проводниковых материалов.

Пыль и песок способствуют коррозии металлических деталей и развитию плесени, а попадая в зазоры между трущимися частями, ускоряют их износ.

Биологические воздействия

Биологические воздействия определяются совокупностью воздействующих биологических факторов. Биологический фактор (биофактор) – это организмы или их сообщества, вызывающие нарушение работоспособного состояния объекта. Событие выхода какого-либо параметра ЭУ под действием биофактора за границы, указанные в ТД, называют биологическим повреждением (биоповреждением).

Виды биоповреждений разделяют на четыре типа:

1) механическое разрушение при контакте организмов с ЭУ;

2) ухудшение эксплуатационных параметров;

3) биохимическое разрушение;

4) биокоррозия.

Рис. Классификация биоповреждений

Механическое разрушение ЭУ вызывается макроорганизмами, имеющими размеры, сравнимые с габаритами изделий. Макроразрушение при контакте может произойти в результате столкновения, прогрызания и уничтожения изделия, например при столкновении птиц с самолетами и антенн радиолокационных станций, прогрызании материалов (крысами, зайцами, белками), а также открыточелюстными насекомыми (различными видами термитов и муравьев). Уничтожение материалов и изделий обычно происходит в процессе питания организмов.

Ухудшение эксплуатационных параметров вызывается биозагрязнением, биозасорением и биообрастанием. Биозагрязнением называют выделения организмов и продукты их жизнедеятельности, воздействие которых при смачивании водой или впитывания влаги воздуха приводит к изменению параметров ЭУ. Биозасорение связано с наличием спор грибов и бактерий, семян растений, частей мицелия грибов, помета, выделений организмов, отмирающих организмов. Биообрастание бактериями, грибами, водорослями, губками, моллюсками и другими организмами поверхностей ЭУ усиливает коррозию металлов. Биохимическое разрушение широко распространённый, но наиболее трудно поддающийся изучению вид биоповреждений, т.к. вызывается в основном микроорганизмами. Этот вид разрушения разделяют на два подвида: биологическое потребление материалов в процессе питания микроорганизмов и химическое воздействие выделяющихся при этом веществ.

Биологическое потребление связано с предварительным химическим разрушением ферментами исходного материала, иногда только одного компонента (обычно высокомолекулярного соединения, например пластификатора, стабилизатора). Такое разрушение открывает путь физико-химической коррозии, приводит к ухудшению свойств материала и его механическому разрушению под действием эксплуатационных нагрузок. Химическое действие продуктов обмена повышает агрессивность среды, стимулирует процессы коррозии. Физико-химическая коррозия на границе материал – организм обусловлена воздействием амино- и органических кислот, а также продуктов гидролиза. В основе биоповреждения, называемого биокоррозией, лежат электрохимические процессы коррозии металлов под действием микроорганизмов. Характер процессов и механизмов биоповреждений и их влияние на материалы и изделия тесно связаны с ростом и размножением организмов, которым необходимо постоянно пополнять энергию от внешних источников.

Подавляющее большинство (50…80%) повреждений ЭУ обусловлено воздействием микроорганизмов (бактерий, плесневых грибов и др.), развитие и жизнедеятельность которых определяются внешними факторами:

Физическими (влажность и температура среды, давление, радиация и т.д.),

Химическими (состав и реакция среды, её окислительно - восстановительные действия),

Биологическими.

Наибольшее влияние на активность микроорганизмов оказывают температура и влажность.

Бактерии – самая многочисленная и распространённая группа одноклеточных микроорганизмов. Бактерии быстро размножаются и легко приспосабливаются к изменяющимся условиям среды т.к. они могут адаптивно образовывать ферменты, необходимые для трансформации питательных сред. Например, "безвредные" в земных условиях бактерии трансформируются во вредные штаммы в условиях невесомости, постоянной температуры, влажности и др. на космических пилотируемых аппаратах. Одна из особенностей микроорганизмов – способность к спорообразованию. Образование спор у бактерий не связано с процессом размножения, а служит приспособлением к выживанию в неблагоприятных условиях внешней среды (недостатке питательных веществ, высушивании, изменении рН среды и т.д.), причемпричём из одной клетки формируется только одна спора. Размножение бактерий осуществляется путемпутём деления клеток.

Плесневые грибы отличаются от бактерий более сложным строением. Клетки грибов имеют сильно вытянутую форму и напоминают нити – гифы. Гифы ветвятся, образуя мицелий или грибницу. Многообразие питательных материалов, используемых грибками, обусловлено большим числом ферментов, катализирующих процессы разложения. Грибковые образования в процессе жизнедеятельности выделяют продукты обмена веществ, которые преимущественно состоят из органических кислот (щавелевой, муравьиной, угольной, лимонной), вызывающих коррозию металла или разложение электроизоляционного материала. Наиболее разрушительное воздействие плесневые грибы оказывают на изоляционные материалы, а также на канифоль и спиртоканифольные флюсы. Особенность грибов – разнообразие способов их размножения: обрывками мицелия, спорами, оидиями, конидиями. Оптимальные условия для развития плесневых грибов – высокая влажность (более 85%), температура +20..30°С°С и неподвижность воздуха. Большую роль при заселении материалов грибами играет способность спор адсорбироваться на гладкой поверхности.

действие микроорганизмов на материалы и элементы ЭУ . Благодаря микроскопическим размерам гифы и споры проникают в углубления и трещины материала, прорастают, образуют мицелий, который, быстро распространяясь, вызывает изменение массы, водопоглощения и степени гидрофобности. Обрастание микроорганизмами зависит от химического состава и строения материала, микрофлоры окружающей среды, загрязнений (органических и неорганических) в воздухе, климатических условий. В первую очередь грибы поражают материалы, содержащие питательные для них вещества. Это ткани из натуральных волокон, белковые клеи, углеводороды, пластмассы, краски, остатки растворителей и др. Используя эти материалы в качестве углерода и энергии, грибы приводят их в негодность. Однако порче подвергаются и материалы, не содержащие никаких питательных веществ (разрастание мицелия на поверхности оптического стекла – после удаления грибного налёта на стекле остаются следы, напоминающие мицелий, – "рисунок травления"). Это следствие разрушения стекла продуктами метаболизма; наиболее агрессивными являются органические кислоты (лимонная, уксусная, щавелевая, винная, яблочная и др.). Органические кислоты и другие метаболиты, обладая высокой проводимостью, могут быть основной причиной снижения удельных поверхностного и объёмного сопротивлений материалов, напряжения пробоя, увеличения тангенса угла диэлектрических потерь, разрушения лакокрасочных покрытий. Эти кислоты также стимулируют коррозию металлов.

Под влиянием плесени возрастает интенсивность старения пластмасс, прочность стеклопластиков снижается на 20…30%. Развитие плесневых грибов на электроизоляционных материалах ухудшает их диэлектрические свойства. Высокое содержание влаги в клетках грибов (до 90%) приводит к коротким замыканиям между токоведущими частями. Источниками спор плесневых грибов являются руки рабочих, технологические среды и воздух . Применение горячих операций на начальных стадиях технологического процесса значительно уменьшает число биоповреждений. Благоприятное действие оказывает аэрация воздуха в производственных помещениях.

Насекомые повреждают материалы и изделия, расположенные на пути к пище, месту окукливания и строительства гнезд. Щели, углубления и другие укрытия привлекают насекомых. Шероховатая поверхность удобна для их передвижения. На холодные предметы насекомые не садятся, теплые их привлекают. Насекомые сначала выгрызают в материале небольшие полости, затем их обживают, вызывая биозасорение и биозагрязнение изделий. Разрушениям подвергаются, прежде всего, целлюлозосодержащие (дерево, картон, бумага) и мягкие синтетические материалы, изделия из пенополиуретана, фенопластов с целлюлозными наполнителями, поливинилхлоридных трубок. Большие скопления насекомых часто служат причиной коротких замыканий. Из других видов насекомых наиболее опасны моль (повреждает натуральные и искусственные ткани), жуки-кожееды (разрушают кабели и покрытия), муравьи (засоряют и загрязняют изделия).

Грызуны наносят механические повреждения, вызывающие обрывы, замыкания и нарушения герметизации. В республиках бывшего СССР насчитывалось около 140 видов грызунов – наибольший вред причиняют серая, черная, пластинчатозубая и туркестанская крысы , домовая, полевая, лесная и азиатская мыши, белки, бобры, ондатры, кроты, слепыши, зайцы. Грызуны повреждают приборы, тару и упаковку, теплоизоляционные материалы, резино- технические изделия, пленкиплёнки, кабель и т.д. Помимо прямого уничтожения сырья, материалов, изделий грызуны загрязняют их экскрементами, шерстью, материалом гнездгнёзд, остатками пищи.

Космические воздействия

Космические воздействия образованы совокупностью следующих факторов:

Электромагнитных и корпускулярных излучений,

Глубокого вакуума,

Лучистых тепловых потоков,

Невесомости,

Метеорных частиц,

Магнитных и гравитационных полей планет и звездзвёзд и др.

Выделяют три среды: межзвёздную, межпланетную, атмосферу планет и их спутников. Межзвёздная среда состоит из межзвёздного газа и мельчайших твёрдых частиц, пыли, заполняющих пространство между звёздами. Межзвёздная среда вблизи Солнца переходит в межпланетную среду, которая заполняет пространство между планетами Солнечной системы. Межпланетная среда состоит из расширяющегося вещества солнечной короны – ионизированных атомов водорода (90%), атомов гелия (9%). Наибольший интерес при эксплуатации ЭУ представляет атмосфера Земли, в основном ее внешняя часть – экзосфера.

Изменение параметров атмосферы Земли с высотой

Высота, км Давление, Па Концентрация частиц, см -3 Температура, К Характеристика вакуума
Уровень моря, 1,33×10 5 2,7×10 19 ---
0,5×10 -5 7×10 9 1 200
1,0×10 -5 8×10 8 1 500 Глубокий
4,0×10 -7 2,5×10 7 1 600
4×10 -9 1,5×10 5 1 600
8×10 -10 2×10 4 1 800 Очень глубокий
5×10 -10 1×10 4 2 000
4×10 -10 4×10 3 3 000
2,5×10 -10 1×10 3 15 000
2,5×10 -11 100 000 Сверхглубокий
1,5×10 -11 3-4 200 000

Здесь температура характеризует лишь кинетическую энергию частиц газа, которая не оказывает прямого влияния на температуру открытых поверхностей ЭУ, установленных на космических объектах, в силу большой разреженности среды.

Эксплуатация в космосе характеризуются воздействием на ЭУ корпускулярных излучений. Поток элементарных частиц высокой энергии, преимущественно протонов, ядер гелия (a- частиц) и ядер более тяжёлых элементов приходит на Землю изотропно из удалённых областей Галактики. Это первичные космические лучи. Взаимодействуя с атомными ядрами воздуха, они рождают в атмосфере вторичное излучение, которое составляют все известные элементарные частицы. Для ЭУ на космических аппаратах существенное влияние имеют радиационные пояса, которые представляют собой стабильные области заряженных частиц, задержанных и удерживаемых магнитным полем Земли, и метеорные частицы, имеющие скорости до 72 км/с.

Под влиянием солнечной радиации изменяются физико-химические свойства многих материалов. Полиэтилен при хранении в темноте не изменяет своих свойств в течении многих лет, однако его срок службы под действием солнечной радиации – 6 мес. Ультрафиолетовое облучение активирует и поверхность металлов, влияя на скорость их коррозии.

Радиационная стойкость электронных элементов в основном определяется изоляционными материалами. Радиационные излучения приводят к изменению внутреннего строения молекул изоляционных материалов. Склонность к образованию пространственной структуры под воздействием радиации выражена тем ярче, чем выше молекулярный вес полимера. Облучённый полимер обладает большей прочностью, большим модулем упругости и меньшей газопроницаемостью, чем необлучённый. Однако образование поперечных связей, число которых растёт с дозой облучения, вызывает появление в материале внутренних напряжений и повышает его хрупкость. Воздействие большой дозы радиации на фторопласт вызывает деструкцию его макромолекул, что приводит к резкому ухудшению его физико-химических свойств, вплоть до образования порошка с выделением фтора. Таким образом, применение соединителей в условиях радиационного излучения должно производиться с учётом радиационной стойкости изоляционных материалов.

Механические воздействия

При эксплуатации и транспортировке ЭУ подвергаются механическим воздействиям: вибрационным, ударным и линейным нагрузкам, а также звуковому давлению (акустическим шумам). Требования по механическим нагрузкам на ЭУ постоянно ужесточаются.

Вибрация – один из самых опасных и распространённых видов механических воздействий. Вибрация – колебания самого изделия или частей его конструкции. Вибрации приводят к поломкам конструкции, обрывам проводов и кабелей, нарушению герметичности, механическим напряжениям и деформациям в ЭУ. Наиболее часто вибрационные нагрузки возникают в бортовой электронной аппаратуре. Вибрации зависят от места расположения ЭУ, способа монтажа и крепления. Установившиеся вынужденные колебания определяются гармонической функцией. Амплитуда колебаний зависит не только от параметров системы и возбуждающей силы, но и от частоты w. Чем выше добротность механической колебательной системы, тем меньше затухание колебаний и тем острее пик резонансной кривой. Если частота w возбуждающей силы совпадает с собственной частотой w 0 механической системы, то возбуждается резонансное колебание. Нагрузки на ЭУ возрастают в Q раз.

Рис. Уровни вибрационных воздействий, которым подвергаются ЭУ 1 – вибрация, 2 – вибрация, возбуждаемая ударом

Такая модель приемлема для исследования только простых механических систем ЭУ, т.к. большая их часть представляет собой сложные механические системы. Резонанс отдельного элемента конструкции независимо от резонанса всей его конструкции может привести к нарушению работоспособности всего изделия. Для расчёта резонансных частот сложных систем целесообразно изображать системы в виде совокупности изолированных элементов, а связи между ними заменять условиями их закрепления. Метод анализа сложных механических систем путём расчёта отдельных элементов получил в промышленности название поузлового метода .

Удар – механическое воздействие, вызванное ускорением при резком изменении скорости или направления движения ЭУ. При ударе возникают силы, деформирующие конструктивные элементы изделий и приводящие к образованию механических напряжений. Они могут служить причиной разрушения изделий. Удар сопровождается возбуждением затухающих колебаний, т.е. неустановившейся вибрацией на частотах собственных колебаний конструктивных элементов изделий. Уровни разрушающих усилий возрастают в Q- раз, если элементы конструкции резонируют на частотах возмущений, вызванных ударом. Тряска – воздействие на ЭУ серии ударов в виде импульсов, следующих один за другим.

Акустический шум . Некоторые виды вибрации сопровождаются выделением энергии звуковой частоты. Это явление называется акустическим шумом или акустической вибрацией. Выделение энергии колебаний звуковой частоты сопровождается механическими колебаниями частиц атмосферы, которые приводят к изменению давления по сравнению со статическим. Разность между статическим давлением и давлением в данной точке звукового поля называется звуковым давлением . распространение звуковой волны характеризуется колебательным смещением частиц среды от положения покоя. Скорость распространения звуковых волн в воздухе зависит от температуры среды по закону . При нормальном атмосферном давлении и температуре 0 0 С скорость звука равна 331 м/с. С повышением температуры до 290 К (27 0 С) она увеличивается до 340 м/с. Скорость звука зависит от температуры воздуха, его влажности, направления и силы ветра. Акустический шум приводит к механическому возбуждению конструктивных элементов изделия. Под действием энергии колебаний звуковой частоты в электронных элементах возникает микрофонный эффект; начинают вибрировать реле, малогабаритные элементы, объёмные проводники.

Cтраница 1


Биологические факторы также могут влиять на работоспособность машины. Например, в тропических странах имеются микроорганизмы, которые не только разрушают некоторые виды пластмасс, но даже могут воздействовать на металл.  

Биологические факторы наиболее сильно воздействуют на покрытия, работающие в тропическом климате и в морской среде. Подводные части корпусов судов обрастают, на покрытиях развиваются микроорганизмы, грибки и плесень. Эти явления предотвращаются благодаря использованию специальных композиций, в состав которых входят и яды.  

Биологические факторы, В естественных условиях обитания микроорганизмы растут совместно с другими микроорганизмами, с растениями и животными. Между всеми этими группами организмов устанавливаются определенные взаимоотношения. Враждебные отношения называются антагонистическими, а обоюдополезные - симбиотическими. Могут быть и нейтральные отношения.  

Биологические факторы также могут влиять на функционирование ТС. Например, в тропических странах имеются микроорганизмы, которые разрушают не только некоторые виды пластмасс, но даже могут воздействовать на металл.  

Биологические факторы, наиболее сильно воздействуют на покрытия, работающие в тропическом климате и в морской среде. Подводные части корпусов судов обрастают, на покрытиях развиваются микроорганизмы, грибки и плесень. Эти явления предотвращаются благодаря использованию специальных композиций, в состав которых входят и яды.  


Биологические факторы учитывают взаимоотношения микроорганизмов в окружающей среде.  

Биологический фактор имеет основное значение в повреждаемости техники и разрушении материалов. Микроорганизмы, находясь практически повсюду: в воздухе, воде, почве, принимают активное и непосредственное участие в повреждениях техники и превращениях различных материалов. Это явление происходит в результате борьбы микробов за существование. Явление носит двойственный характер: с одной стороны, биоповреждение эксплуатирующихся конструкций может приводить к существенному экономическому ущербу, с другой - микроорганизмы очищают среду, утилизируя отходы, накапливающиеся в результате интенсивной деятельности человека.  

Биологические факторы также могут способствовать деструкции полимеров. Многие из них (нитрат целлюлозы, поливинилацетат, казеин и некоторые натуральные и искусственные каучуки) подвергаются действию микроорганизмов. Однако такие полимеры, как полиэтилен, полистирол, тефлон и др., устойчивы к действию биологических факторов. Это необходимо учитывать при выборе полимерных строительных материалов.  

Подробное решение параграф § 8 по географии для учащихся 9 класса, авторов А.И. Алексеев, С.И. Болысов, В.В. Николина 2011

  • Гдз тренажер по Географии за 9 класс можно найти

1. Назовите факторы, наиболее сильно воздействующие на окружающую среду.

Факторы, наиболее сильно воздействующие на окружающую среду:

1) промышленность;

2) сельское хозяйство;

3) транспорт;

4) урбанизация.

2. Продолжите предложение. Экологическая ситуация – это...

Экологическая ситуация – это пространственно-временное сочетание различных, в том числе позитивных и негативных с точки зрения проживания и состояния человека условий и факторов, создающих определенную экологическую обстановку на территории разной степени благополучия или неблагополучия.

3. Что такое экологические проблемы? Какие экологические проблемы существуют в нашей стране?

Экологическая проблема – изменение природной среды в результате антропогенных воздействий, ведущее к нарушению структуры и функционирования ландшафтов и приводящее к негативным социальным, экономическим и иным последствиям.

Экологические проблемы в России:

1. Загрязнение воздуха. Выбросы промышленных отходов ухудшают состояние атмосферы. Негативно для воздуха сгорание автомобильного топлива, а также сжигание угля, нефти, газа, древесины. Вредные частицы загрязняют озоновый слой и разрушают его. Попадая в атмосферу, они вызывают кислотные дожди, которые в свою очередь загрязняют землю и водоемы. Все эти факторы являются причиной онкологических и сердечно-сосудистых заболеваний населения, а также вымирания животных. Еще загрязнение воздуха способствует изменению климата, глобальному потеплению и увеличению ультрафиолетового солнечного излучения;

2. Вырубка лесов. В стране процесс вырубки лесных массивов практически бесконтрольный, в ходе чего вырубаются сотни гектаров зеленой зоны. Наиболее изменилась экология на северо-западе страны, а также становится актуальной проблема обезлесенья Сибири. Многие лесные экосистемы изменяются для создания сельскохозяйственных угодий. Это приводит к вытеснению многих видов флоры и фауны из мест их обитания. Нарушается круговорот воды, климат становится более сухим и образуется парниковый эффект;

3. Загрязнение вод и почвы. Промышленные и бытовые отходы загрязняют поверхностные и подземные воды, а также почву. Ситуацию ухудшает то, что в стране слишком малое количество водоочистительных сооружений, а большинство эксплуатируемого оборудования устарело. Также сельскохозяйственная техника и удобрения истощают грунты.

4. Загрязнение морей. Существует еще одна проблема – это загрязнения морей разлившимися нефтепродуктами. Ежегодно реки и озера загрязняют отходы химической промышленности. Все эти проблемы ведут к дефициту питьевой воды, поскольку многие источники непригодны даже для применения воды в технических целях. Также это способствует разрушению экосистем, вымирают некоторые виды животных, рыб и птиц;

5. Бытовые отходы. В среднем на каждого жителя России приходится 400 кг твердых бытовых отходов в год. Единственный выход – это переработка отходов (бумага, стекло). Предприятий, которые занимаются утилизацией или переработкой отходов действует в стране очень мало;

6. Радиоактивное загрязнение. На многих атомных станциях оборудование устарело и ситуация приближается к катастрофической, ведь в любой момент может случиться авария. Кроме того, недостаточно утилизируются радиоактивные отходы. Радиоактивное излучение опасных веществ вызывает мутацию и гибель клеток в организме человека, животного, растения. Загрязненные элементы попадают в организм вместе с водой, едой и воздухом, откладываются, и последствия облучения могут проявиться спустя время;

7. Уничтожение заповедных зон и браконьерство. Эта беззаконная деятельность ведет к гибели как отдельных видов флоры и фауны, так и уничтожению экосистем в целом.

4. Найдите на экологической карте в атласе территории с различными видами экологических ситуаций. Что это за территории? С чем связаны экологические ситуации на них?

Задание для самостоятельной работы.

Пояснение: территории с различными видами экологических ситуаций – это территории с широко развитой промышленностью, дорогами, инфраструктурой. Как правило, такими территориями выступают крупные города, промышленные центры, места добычи полезных ископаемых, энергии.

5*. Выясните особенности экологической ситуации в вашей местности. Чем она вызвана? Какие пути решения вы можете предложить в рамках проекта «Каким я хочу видеть экологическое будущее моего района»?

на примере Челябинской области

Общая характеристика, история и особенности

Экологические проблемы Челябинской области можно отнести к проблемам двух видов. Одни типичны для индустриальной области, другие исключительно связаны с особенностями местного производства.

Область входит в число самых индустриальных в РФ. Особенностью челябинской индустриализации является то, что вся ее промышленность создана в первой половине XX века, оборудование и технологии которой на сегодняшний день сильно устарели.

Основные источники загрязнения

По объемам произведенной продукции, черная металлургия Челябинской области не имеет себе равных в России. Она представлена металлургическими комбинатами Магнитогорска и Челябинска, заводами Златоуста, предприятиями по производству стальных труб и ферросплавов. В области также производят медь, никель и огнеупорные материалы из магнезита. Предприятия этой отрасли являются основными источниками загрязнения окружающей среды. Самыми «грязными», с экологической точки зрения, являются города: Челябинск, Магнитогорск и Карабаш. Основной вид загрязнения – тяжелые металлы. Кроме них в почве и воздухе повышенная концентрация бензопирена, ртути, свинца, хрома, марганца. Выбросы в атмосферу отработанных газов производств и автотранспорта содержат оксиды азота и углерода, сажу, свинец и других токсичные вещества.

Добывающая промышленность оставила после себя карьеры до 200 метров в глубину и отвалы породы до 70 метров в высоту, которые и внешне и, по сути, схожи на безжизненные пейзажи Луны.

Переработка отходов и промышленных и коммунальных предприятий, содержащие нитраты, фосфаты, аммиак, нефтепродукты, те же тяжелые металлы, сбрасываются в реки области: Теча, Миасс, Урал и Ай. Содержание солей и железа в них значительно повышена.

У Челябинска экологические проблемы, кроме промышленного загрязнения воды, воздуха и почвы, наиболее остро стоят с утилизацией и переработкой отходов. Доле в том, что единственный официальный полигон для отходов, в том числе твердых бытовых, был закрыт в 1970 году, а новых так и не было создано. Потому практически все свалки и места сбросов отходов являются несанкционированными. На этом фоне говорить о том, что собственники отвалов металлургического производства не хотят заниматься их переработкой, что уже успешно делается во всем мире с применением современнейших технологий, неактуально.

Атомная промышленность и «Маяк»

На территории Челябинской области расположено больше всего в России «атомоградов». Здесь проводят изучение и испытания материалов для атомной промышленности, перерабатывают и утилизируют ядерное топливо, производят радиоактивные изотопы и приборы для отрасли. На момент строительства предприятий атомная отрасль была в начальной стадии своего развития. Многие процессы и технологии были новы и не имели достаточной степени защиты для природы. Потому с 1949 по 1957 годы на них происходит ряд аварий, которые произвели к существенному загрязнению радиоактивными веществами не только территорию области, но и соседних. Общее названия загрязненного региона – Восточно-Уральский радиоактивный след. Сначала это были сбросы в реку Теча отходов радиохимического производства с активностью до 2,7 млн. Кюри. Было облучено свыше 124 тыс. человек.

Производственное Объединение «Маяк»В 1957 году из-за конструкционных недостатков емкостей для хранения высокоактивных отходов и перегрева одной из них, произошел взрыв. В атмосферу было выброшено более 20 млн. кюри радиоактивных веществ. Для сравнения, в результате Чернобыльской аварии было выброшено 50 млн. кюри.

С территорий «радиоактивного следа» было расселено более 10 тыс. человек и 800 км2 земель было выведено из хозяйственного пользования.

На сегодняшний день Производственное Объединение «Маяк» накопило более 1 млрд. кюри отходов, часть из которых хранится в открытом водоеме озера Карачай. А в сторону бассейна рек Обь и Иртыш со скоростью 84 м. в год двигается подземная радиоактивная водяная линза.

«Каким я хочу видеть экологическое будущее моего района»

Я хочу, чтобы экологическая ситуация в моем регионе была благоприятной. С одной стороны, промышленность области – это рабочие места, развитие социальной инфраструктуры. С другой стороны, промышленные объекты загрязняют мою малую Родину. Я считаю, что необходимо использовать современные технологии, чтобы нивелировать ущерб, наносимый хозяйственной деятельностью человека.

Пути решения экологических проблем Челябинской области:

1) Создание Регионального совета по разработке Комплексной экологической программы Челябинской области.

2) Организация массовых мероприятий у офисов владельцев ключевых загрязнителей региона с требованием поддержать требования гражданского общества и стать участником Комплексной экологической программы Челябинской области.

3) Создание местных независимых экологических советов, которые возьмут на себя контроль над соблюдением ключевыми загрязнителями региона базовых требований природоохранного законодательства и целевых показателей КЭП.

4) Организация кампании общественного давления на РМК с требованием провести общественный экологический аудит проекта строительства Томинского ГОКа.

5) Фото- и видеофиксация силами участников движения фактов нарушения экологического законодательства с последующей передачей материалов государственным природоохранным организациям.

6) Проведение просветительских мероприятий с участием экспертов и медийных фигур, направленных на повышение экологической грамотности молодежи и заинтересованности молодежи в сохранении природного наследия региона.

6*. Сформулируйте и обоснуйте прогноз экологической ситуации в вашем регионе на 2020 г.

Состояние экологии Челябинской области не внушает оптимизма и на 2020 год будет характеризоваться следующими процессами:

1) загрязнение атмосферного воздуха промышленными и иными предприятиями и организациями, в том числе выбросами вредных веществ без очистки;

2) высокий уровень поступления загрязняющих веществ от транспортных средств из-за увеличения количества автотранспорта; загруженности основных городских магистралей автотранспортом, особенно перекрестков в час-пик; недостаточное количество проезжих частей дорог в сложившейся планировочной структуре;

3) низкий уровень оформления санитарно-защитных зон промышленными предприятиями;

4) использование "старых" автотранспортных средств, оборудование которых не соответствует экологическим стандартам;

5) пересечение территории области значительным количеством транзитного транспорта;

6) устаревшее дорожное покрытие отдельных улиц и дорог;

7) неэффективный контроль за охраной атмосферного воздуха;

8) нарушение природопользователями норм, предписывающих снижать выбросы в период неблагоприятных метеоусловий.

Изменение экологической ситуации в Челябинской области до 2020 года потребует эффективных действий со стороны государства и гражданского населения в отношении крупных промышленных предприятий, не обеспечивающих должным образом экологическую безопасность области вследствие попытки руководящего состава этих предприятий снизить производственные издержки. Государство разработало и внедрило в практику концепцию экологической безопасности до 2020 года. Но несмотря на это активные действия со стороны государственного аппарата в отношении ключевых загрязнителей могут привезти лишь к закрытию части производств, увольнению рабочих и т.д., что приведет к серьезным социально-экономическим проблемам. Таким образом, без принципиальных изменений правил ведения бизнеса в Челябинской области улучшение экологической ситуации представляется невозможным.

Для рассмотрения того, как окружающая среда воздействует на организм человека в течение всей его жизни от рождения до смерти, удобно разделить факторы среды по природе их воздействия на физические, химические , биологические и социальные.

Физические факторы. Человек на протяжении всей своей постнатальной жизни постоянно взаимодействует с двумя основными физическими факторами, к которым организму приходится непрерывно приспосабливаться, - это температура окружающей среды и сила тяжести (гравитация). Реакция организма на оба эти фактора самым непосредственным образом связана с массой, геометрическими размерами и пропорциями тела, которые меняются по мере возрастного развития. Другие физические факторы, также определяющие особенности среды обитания человека, воздействуют на организм независимо от его формы и размеров (например, влажность, атмосферное давление, газовый состав окружающего воздуха, инсоляция и т.п.).

Температура - постоянно действующий фактор переменного значения. Клетки организма нуждаются для своего нормального функционирования в постоянной температуре около 37 °С, изменение температуры на 10 °С в ту или иную сторону способно в 2- 3 раза изменить скорость всех биохимических реакций, причем их согласованность в этом случае будет нарушена. Если температура тела опускается ниже +25 или поднимается выше +42 "С, клетки тела погибают и наступает смерть.

Изменения внешней температуры требуют приспособления организма к этому переменному фактору. В этом случае очень важны размеры и пропорции тела, так как, согласно физическим законам, интенсивность производства тепла в организме пропорциональна его массе, а скорость теплоотдачи пропорциональна площади поверхности тела. Изменение размеров и пропорций, происходящее в результате роста, непосредственно сказывается На балансе продукции и отдачи тепла. Ребенок обладает относительно большой поверхностью тела (т.е. на 1 см 2 поверхности у ребенка приходится меньшее количество его массы), поэтому для него задача вывести избыточное тепло решается легче, чем выработать дополнительное количество тепла. В то же время относительно большая поверхность тела ребенка приводит к тому, что при низкой температуре он быстрее охлаждается.

Повышенная температура среды требует - во избежание перегрева - активации функций, способствующих теплоотдаче: усиливаются поверхностный кожный кровоток, а также легочная вентиляция и потоотделение - все это способствует переносу тепла из «ядра» тела к его поверхности и выделению избыточного тепла в окружающее пространство. Пониженная температура, напротив, требует сохранения тепла в организме: сужаются кожные кровеносные сосуды, снижается активность внешнего дыхания, прекращается потоотделение и усиливается теплопродукция за счет повышения интенсивности метаболизма.

В организме взрослого человека дополнительное тепло при охлаждении образуется главным образом в печени и скелетных мышцах (всем известно, когда холодно, мы начинаем дрожать - это и есть проявление терморегуляторной активности мышц: не производя никакой внешней работы, они непрерывно сокращаются, согревая протекающую через них кровь).

У детей есть орган, специально предназначенный для производства дополнительного тепла, - бурая жировая ткань. Это жировые клетки, которые обильно снабжаются кровью и содержат огромное количество митохондрий. Особенностью митохондрий бурого жира является их способность «сжигать» большое количество жира, не производя АТФ. При этом практически вся высвобождающаяся энергия превращается в тепло. Таким образом, бурая жировая ткань выполняет в детском организме роль своеобразной «печки», которая включается каждый раз, когда ребенку становится холодно. Сигналом для такого включения служит воздействие симпатического отдела ЦНС и ее медиатора норадреналина, который может также поступать из надпочечников. Бурый жир расположен у детей под кожей между лопатками, вдоль крупных шейных сосудов, а также около крупных сосудов внутри грудной клетки и брюшной полости. У взрослых бурая жировая ткань встречается редко, это специальный «детский» орган, исчезающий по мере взросления. Так же ведут себя многие лимфатические железы, обеспечивающие иммунитет (зобная железа, гланды и другие). Перенесенные ребенком острые заболевания (воспаление легких, грипп и другие) могут приводить к уменьшению размеров и активности бурого жира. Поэтому так важно соблюдать комфортный температурный режим для больных и выздоравливающих детей.

Детский организм более чувствителен к изменениям внешней температуры, чем взрослый. Температурный диапазон, в котором человек чувствует себя комфортно, составляет для взрослого от +25 до +30 °С, а для ребенка первого года жизни - от +27 до +33 °С. Защиту от колебаний температуры окружающей среды человеку обеспечивает одежда. Она должна быть такой, чтобы внутри (на поверхности кожи под одеждой) температура приближалась к зоне комфорта. При этом важно, чтобы одежда не препятствовала воздухообмену: ведь кожа должна дышать, а испарения потовых желез должны иметь выход, иначе кожные покровы начинают преть. что часто бывает при неправильном уходе за маленькими детьми.

Механизмы терморегуляции у детей начинают интенсивно развиваться в возрасте 4-5 лет, именно в этом возрасте наиболее эффективны различные закаливающие процедуры, благодаря которым сосудистые реакции ребенка приобретают подвижность, необходимую для эффективного поддержания постоянной температуры тела. Закаливание позволяет ребенку защититься от простуд и повышает общий иммунитет организма.

Гравитация (сила тяжести) - другой постоянно действующий фактор, который связан с массой и формой тела. В отличие от температуры уровень гравитационного воздействия не колеблется, и даже различия в силе тяжести, которые можно с помощью точных физических приборов определить на экваторе и на полюсах Земли, либо на уровне моря и высоко в горах, не столь уж существенны, и организм человека на них практически не реагирует. Однако любое перемещение тела или его части в поле земного тяготения требует специальных усилий по преодолению гравитации, а следовательно, дополнительных затрат энергии. Перемена положения тела (лежа, сидя, стоя) весьма существенно изменяет условия, в которых функционируют вегетативные системы - кровообращение, дыхание, выделение и др. При вертикальном положении тела сердцу приходится выполнять значительно (у взрослого человека - на 15-20%) большую работу по преодолению гидростатического сопротивления столба крови, чтобы обеспечить нормальные условия кровоснабжения тканей, особенно головного мозга. У ребенка, имеющего меньшие размеры тела, изменение его положения в пространстве сказывается в меньшей степени. Именно поэтому кровяное давление у детей в норме существенно ниже, чем у взрослых, меньше также разница между систолическим и диастолическим давлением (правда, кроме геометрических размеров, здесь еще имеет значение эластичность сосудов, которая у детей выше, и их тонус, который у детей ниже, чем у взрослых).

Влажность. Абсолютно сухой, как и 100 % влажный, воздух тяжел для дыхания человека. В пустынях и жарких степях бывает такая сухость воздуха, что дыхание «перехватывает» из-за высыхания слизистых оболочек воздухоносных путей. У детей чувствительность к потере влаги выше, чем у взрослых, что необходимо учитывать, особенно при организации двигательной активности детей в летнюю жару, которая всегда связана с активацией дыхания. В тропических и жарких странах с морским климатом, а также в летние месяцы в районах, где много природных водоемов, наблюдается избыточная влажность, которая также снижает эффективность работы легких. В таких ситуациях умственная и особенно физическая работоспособность снижается, причем у детей в значительно большей степени, чем у взрослых.

Инсоляция и другие формы электромагнитных излучений. Солнечные лучи, попадая на тело человека, вызывают изменение цвета его кожи (загар), который является ответной адаптивной реакцией организма. Темная кожа в меньшей степени пропускает лучистую энергию солнца вглубь тела, защищая клетки от ультрафиолета, способного повредить крупные белковые молекулы. Детская кожа до полового созревания обычно намного менее пигментированная, чем у взрослых, поэтому уровень инсоляции для детей необходимо строго контролировать. Даже взрослый может легко обжечь свои кожные покровы ярким солнцем, особенно вблизи воды (мельчайшие капельки воды действуют как увеличительные стекла, а их испарение на ветру с поверхности тела создает обманчивое ощущение прохлады). Перегрев на солнце (солнечный удар) и солнечный ожог - довольно частые явления, особенно у городских детей, резко меняющих с началом каникул уровень инсоляции своей кожи. Жители сельской местности, как правило, более адаптированы к воздействию солнечных лучей, имеют более смуглую кожу, а смена сезонов и связанное с ней изменение уровня инсоляции для них происходит более плавно и постепенно.

Не только солнце, но и другие источники электромагнитного излучения могут быть опасны, если это излучение превышает гигиенически допустимые нормы. В частности, такими источниками являются телевизионные и радиопередающие устройства, включая сотовые телефоны. Контакт детей с такими источниками должен быть ограничен, так как детский организм более чувствителен к излучению, чем взрослый. По этой же причине детям в ограниченном объеме и только в силу необходимости назначают разного рода медицинские процедуры, связанные с применением рентгеновского излучения.

Особую опасность представляют источники радиоактивного излучения. Последствия катастрофы на Чернобыльской АЭС особенно тяжелы тем, что пострадало большое число детей, у которых под воздействием радиоактивного излучения нарушается, в первую очередь, гормональная регуляция функций. Особенно часто в таких случаях наблюдается поражение щитовидной железы, а также половых желез. Радиоактивные изотопы, длительное время сохраняющиеся в зонах заражения, способны нарушать самые разные биохимические и физиологические процессы, угнетать рост и развитие и вызывать многие крайне тяжелые заболевания вплоть до лучевой болезни, поражающей систему кроветворения. Это заболевание приводит к резкой потере иммунитета и ослаблению кислородтранспортной функции крови, утрате половой функции, а в тяжелых случаях к смерти.

Парциальное давление атмосферных газов. Каждый газ, находящийся в сосуде, стремится заполнить собой весь объем этого сосуда. Если таких газов несколько, как это имеет место в нашей земной атмосфере (которую условно можно рассматривать в качестве такого сосуда - хотя он и не имеет «стенок», но газы удерживаются около Земли силой ее тяготения), то все равно каждый из них заполняет собой все пространство. Находясь в сосуде, газ оказывает на его стенки определенное давление, которое тем больше, чем больше количество данного газа в сосуде. Атмосферный воздух давит на поверхность Земли, и это давление равно весу столба воздуха от поверхности Земли до верхних, разреженных слоев атмосферы. При этом каждый из газов, составляющих смесь, оказывает свою часть давления. Вот эта часть и называется «парциальным давлением». Согласно законам физики, парциальное давление газа пропорционально его количественной (объемной) доле в данной газовой смеси. Кислород, которым мы дышим, составляет 21 % от общего объема атмосферного воздуха.

Плотность воздуха на уровне моря и высоко в горах сильно различается - с увеличением высоты воздух становится все более разреженным: сказывается уменьшение силы земного тяготения. Меняется атмосферное давление также в зависимости от погодных условий - в зонах циклонической активности оно заметно понижено, а в центре антициклона - повышено по сравнению с «нормой», за которую принято давление 760 мм рт. ст. - наиболее типичное давление на уровне моря в спокойную и ясную погоду. Такие колебания атмосферного давления приводят к тому, что меняется парциальное давление кислорода. Учитывая, что именно парциальное давление кислорода является тем физическим фактором, который обеспечивает его проникновение в организм, легко понять, что такие колебания давления атмосферы влияют на снабжение всех тканей организма кислородом. Жители высокогорных регионов, родившиеся и выросшие в этих условиях, хорошо адаптированы к некоторому недостатку кислорода в окружающем их воздухе, причем эта адаптация закреплена на генетическом Уровне. Для жителей равнинных районов требуется некоторое время, чтобы приспособиться к условиям высокогорья. Детский организм, в котором процессы окислительного обмена протекают более интенсивно, чем у взрослых, более чувствителен к любым перепадам парциального давления кислорода. Возможно поэтому маленькие дети становятся беспокойными и капризными при приближении грозы (зона пониженного атмосферного давления). Указанные обстоятельства необходимо учитывать также при организации путешествий и отдыха для детей, если они предполагают пребывание в высокогорных областях: такие путешествия детям не противопоказаны, но требуют соблюдения строгого режима, ограничения спонтанной двигательной активности и профилактики стрессовых состояний. Не рекомендуется маленьких детей, рожденных и проживающих обычно на равнинах, вывозить для отдыха в горы на высоты свыше 2000-2500 м.

Геомагнитные поля. В последние десятилетия многочисленные исследовательские группы пытаются выяснить, насколько и в каком направлении способны повлиять на состояние организма человека изменения, обусловленные нестабильностью земного магнетизма. Сила магнитного поля земли достаточно велика, а его колебания хорошо заметны для физических приборов, что послужило толчком для изучения эмоциональных и функциональных сдвигов, возникающих под влиянием изменений геомагнитной обстановки. Многие СМИ даже сообщают читателям и слушателям о предстоящих всплесках геомагнитной активности, предлагая им принимать в такие дни профилактические меры неспецифического характера. До сих пор неизвестна точка приложения действия геомагнитных полей на человеческий организм, хотя гипотез и недостаточно обоснованных теорий этого воздействия огромное количество. Специальные измерения, проводившиеся на молодых здоровых людях (студентах), не подтверждают предположений о сильном влиянии геомагнитных полей на психику и вегетативные системы человека. В то же время практический опыт показывает, что дети и старики бывают гораздо более чувствительны к слабым воздействиям, чем люди работоспособного возраста. Вполне вероятно, что геомагнитные воздействия относятся как раз к такому разряду. Во всяком случае, опыт практических врачей-педиатров подтверждает, что дни, на которые прогнозируется резкое изменение геомагнитной ситуации, бывают наиболее напряженными в их практике: больше вызовов, более сложные случаи заболеваний и т. п. Защитить ребенка от воздействия геомагнитного поля Земли невозможно, однако помочь ему пережить наиболее неблагоприятные периоды без негативных последствий вполне реально, следует лишь проявлять в такие дни повышенное внимание к ребенку и больше считаться с его неосознанными потребностями: в таких ситуациях часто инстинктивное поведение оказывается более правильным, чем поведение, диктуемое разумом.

Химические факторы. Человек привык жить в условиях взаимодействия с огромным количеством разнообразных веществ, которые в совокупности составляют биогеохимическую среду его обитания. Среди этих веществ есть необходимые человеку (вода, кислород, питательные вещества и многое другое), нейтральные (азот, многие минеральные вещества и т.п.), а также ядовитые, или токсичные. Поскольку для организма далеко не безразлично, с какими веществами ему приходится иметь дело, уже давно существуют гигиенические нормы предельно допустимых концентраций разнообразных веществ, встречающихся в воздухе, воде, пище, земле и других субстанциях, с которыми соприкасается человек в своей жизни и деятельности.

Состав атмосферного воздуха - важный фактор, влияющий на состояние и функциональную активность человека. В норме атмосферный воздух содержит 21 % кислорода, 78 % азота и около 1 % инертных газов и различных примесей, в том числе углекислый газ, выдыхаемый всеми животными. К таким концентрациям газов мы привыкли. Значительные изменения состава воздуха могут происходить при разного рода чрезвычайных ситуациях и катастрофах. Например, если горит лес или торф, на большой площади вокруг этой территории может резко возрасти содержание в воздухе угарного газа (окись углерода СО), который в отличие от углекислого газа (двуокись углерода СО 2) не стимулирует дыхание, а выводит из строя молекулы гемоглобина, которые переносят в организме животных и человека молекулы кислорода. Отравление угарным газом - одна из главных причин гибели людей на пожарах, а также при неправильном пользовании печью. К такому же результату может привести длительный прогрев автомобильного двигателя в закрытом гараже. Множество ядовитых веществ попадает в воздух в результате работы миллионов автомобильных двигателей и промышленных предприятий, поэтому воздух в крупных городах никак не может считаться безвредным. В лесной зоне воздух насыщен веществами, выделяемыми деревьями, в частности хвойные деревья вырабатывают летучие фитонциды, помогающие очищать воздух от болезнетворных микробов. Большой целебной силой обладает воздух соляных пещер и соляных пустынь: всем известна удивительная целебная сила окрестностей Мертвого моря, где воздух насыщен микроскопическими кристалликами минеральных солей. Морской воздух всегда имеет примесь йода и других испаряющихся веществ, что также влияет на состояние организма. Следует подчеркнуть, что детский организм значительно более чувствителен к изменениям химического состава воздуха, чем взрослый.

Состав воды - гораздо более изменчивый фактор, чем состав воздуха. Сами по себе молекулы воды, разумеется, всегда одинаковы (хотя, по современным данным, вода может находиться в 8 разных физических состояниях, каждое из которых определяет способность воды растворять другие вещества и влиять на их проницаемость через биологические мембраны), но состав и концентрация растворенных в воде веществ могут меняться в очень широких пределах. Морская вода - соленая, непригодная для питья, причем ее состав в разных морях несколько различается. Речная и озерная вода - пресная, однако и в ней растворено некоторое количество солей. Вода, добываемая из артезианских скважин и колодцев, также весьма различна по своему составу. Все это может сильно влиять на обменные процессы в организме человека. Так, выше мы уже говорили, что в местностях, где в воде содержится мало йода, у людей наступает дисфункция щитовидной железы и развивается базедова болезнь - тяжелое нарушение обмена веществ, которое лечится путем добавления солей йода в пищевой рацион. Наличие в воде фтора положительно влияет на твердость зубной эмали, а если организм получает недостаточное количество фтора, зубы начинают крошиться и выпадать в очень раннем возрасте. Чтобы избежать этого, во многих странах теперь воду специально фторируют, одновременно дезинфицируя ее (в России воду, употребляемую в городах для приготовления пищи, для дезинфекции обычно хлорируют или озонируют). Вода - прекрасная среда для размножения множества разнообразных микроорганизмов, в том числе патогенных, т. е. способных вызвать у человека различные заболевания. Поэтому дезинфекция воды, которая используется человеком, - важнейшая забота санитарных служб. Дети бывают особенно чувствительны к болезнетворным микробам, поэтому для приготовления пищи и напитков для детей нужно использовать только кипяченую воду, особенно весной и летом, когда условия для размножения микробов благоприятны. Забота о качестве воды - непременное условие оздоровительного эффекта летнего отдыха детей в сельской местности (в летних лагерях, в походах и экспедициях, просто в деревне).

Состав и качество пищи во многом определяются составом воды и почвы окружающей местности. Химический состав пищи важен также для того, чтобы обеспечить организм всеми необходимыми питательными веществами: белками, жирами, углеводами, витаминами, микроэлементами и т.п. Микроэлементный состав почвы, на которой выращены растения, предназначенные для питания человека и домашних животных, - очень важный фактор, влияющий на гармоничность обменных процессов и нормальное протекание роста и развития ребенка. Более детально проблема качества и количества пищи для детей разного возраста будет обсуждена ниже.

Наличие токсичных веществ может сделать неприемлемым использование любого продукта. Токсичные (ядовитые) вещества могут при определенных условиях накапливаться в воздухе (испарения в зоне разломов земной коры, выхлопы автотранспорта, выбросы промышленных предприятий и т.п.) и воде (химические загрязнения вследствие технологических процессов, разложение органических веществ в стоячей воде и т. п.). При попадании в организм растений и животных этих токсичных веществ возникает вероятность их попадания и в пищу человека, что может привести к сильному отравлению и даже к смерти. Большую осторожность следует проявлять при покупке ранних овощей и фруктов: многие из них выращены с использованием чрезмерных количеств удобрений, а избыток нитратных солей отрицательно сказывается на работе печени, желудочно-кишечного тракта и почек человека. Токсины оказываются в воде также благодаря деятельности некоторых микроорганизмов.

Биологические факторы. Будучи биологическим объектом, человек вольно или невольно непрерывно взаимодействует с огромным количеством живых существ, которые его окружают.

Внутривидовое и межвидовое взаимодействие. С одной стороны, человеку необходимо общаться с себе подобными, и такое общение обязательно влияет на состояние его организма, поскольку это общение вызывает изменения в работе нервной и гормональной систем регуляции. В данном случае речь не идет о социально-психологических аспектах (об этом будет сказано позже), здесь имеются в виду те инстинктивные, неосознаваемые человеком сугубо биологические реакции его организма, которые возникают под влиянием других людей либо сами влияют на окружающих. Так, каждый человек выделяет в окружающее его пространство целый букет разнообразных ароматических веществ, служащих для индивидуальной и половой идентификации. Слабость нашего обоняния (по сравнению с обонянием диких животных) не означает, что мы не улавливаем на подсознательном уровне подобных сигналов и что наша ЦНС не реагирует на них. Внешний вид и неосознаваемый ароматический портрет человека - основа так называемого «первого впечатления», которое, как известно, часто бывает наиболее интегральным и наиболее точным и определяет в дальнейшем характер взаимоотношений с данным человеком. Другой пример внутривидового взаимодействия - известное многим состояние напряжения при попадании в толпу. Даже если нет прямой угрозы жизни и здоровью, человек в толпе часто чувствует себя неуютно, его пугает обилие других человеческих тел, окружающих его, необходимость следовать непредсказуемой воле этого конгломерата. И в то же время быть членом такой группы, которая становится в некий момент «суперорганизмом», - один из самых притягательных соблазнов, инстинктивно переживаемых человеком. Именно по этой причине столь чувственным является, скажем, хоровое пение: каждый, кто участвует в хоре, в какой-то момент начинает ощущать себя частичкой этого суперорганизма, ощущает его власть над собой, и это ощущение вселяет ужас, но и доставляет сладость. Все это на грани физиологии и психологии, но нам важно подчеркнуть, что каждое подобное событие в жизни человека - глубокий стресс, развивающийся по всем законам физиологии, с резкой активацией секреции эндокринных желез и вегетативных реакций.

С другой стороны, человек непрерывно взаимодействует с представителями других видов живых существ. Даже если с человеком не живут никакие домашние животные, помогающие ему снимать стресс и расслабляться, либо, напротив, обладающие стрессогенным эффектом (например, ежедневная дойка коровы представляет собой неизбежный и утомительный вид работы), контактов с представителями животного и растительного мира избежать невозможно.

Если собственных иммунных сил организма для борьбы с патогенными микробами не хватает, приходится прибегать к помощи лекарственных препаратов. Наиболее сильные из них - антибиотики, которые первоначально были выделены из плесневых грибов, а теперь обычно синтезируются на фармацевтических фабриках. Употребление большого количества антибиотиков может приводить к развитию грибковой микрофлоры в кишечнике, что является тяжелым осложнением после инфекционных заболеваний. Для профилактики такого развития событий необходимо вместе с антибиотиками принимать противогрибковые препараты (например, нистатин).

Соблюдение гигиенических правил при приготовлении и употреблении пищи - важнейшая мера профилактики инвазий (поражений глистами).

Природные очаги инфекций и инвазий. Есть инфекционные заболевания, характерные только для человека. А есть такие, которыми болеют и животные, живущие в дикой природе, и человек. Вот эти инфекции могут существовать в некоторых природных условиях независимо от того, живет ли там человек, зато если человек попадает в такую область, то почти неминуемо заболевает. Такие зоны называются природными очагами инфекций, и погасить подобный очаг часто бывает невозможно. Например, чумой болеют многие степные и пустынные грызуны - песчанки, тушканчики, суслики, сурки и другие. В тех местах, где они живут, нередко сотни и тысячи лет существуют природные очаги чумы. Если поблизости поселяется человек, то он может даже незаметно для себя вступить в контакт с этими грызунами либо получить возбудителя чумы через блоху, которая сначала укусила чумного зверька, а потом попала на тело человека. К природно-очаговым инфекциям относятся также сибирский (клещевой) энцефалит, желтая лихорадка, туляремия, сибирская язва, малярия, геморрагические лихорадки и другие особо опасные инфекции.

Детские болезни - форма адаптации организма. Следует подчеркнуть, что дети страдают от инфекций гораздо чаще, чем взрослые. Это связано с тем, что большое число инфекционных заболеваний вызывает стойкий пожизненный иммунитет, т. е. повторная встреча с патогенным микроорганизмом уже не способна привести к заболеванию, так как в организме выработаны соответствующие меры защиты. Однако исключить столкновение ребенка с микробами невозможно, да и не нужно. Так называемые детские инфекционные болезни (корь, скарлатина, ветряная оспа, свинка, краснуха и т.п.) - естественная форма адаптации детского организма к жизни в мире, где возбудители этих инфекций постоянно циркулируют. Это своего рода тренировка для иммунной системы ребенка. Разумеется, эти болезни необходимо правильно лечить и по возможности исключать развитие осложнений, которые, собственно, представляют наибольшую опасность. С возрастом вероятность заболевания многими инфекциями уменьшается, однако к старости иммунитет вновь снижается, и старики часто заболевают, заражаясь от детей.

Социальные факторы. К социальным факторам среды, влияющим на протекание физиологических процессов в организме, относится прежде всего образ жизни человека, сложившийся в результате взаимодействия некоторых психологических, биологических и социальных условий его жизни. В частности, на физическое и функциональное состояние как взрослых, так и (особенно) детей влияет уровень материального достатка, поскольку от него зависит качество и количество потребляемой пищи, доступность разнообразных гигиенических процедур, степень комфортабельности жилища и мест отдыха, способ и качество проведения свободного времени, уровень оздоровительной двигательной активности и т.д. В этом отношении первейшую роль играют семья и ближайшее окружение, причем это особенно важно для детей и подростков, которым порой приходится активно включаться в производственные дела, особенно в сельской местности. Множество обстоятельств семейной жизни составляют тот фон, на котором разворачиваются все физиологические процессы в организме. Режим дня, питания, соблюдение гигиенических правил, условия быта, место проживания и многое другое оказывают самое прямое влияние на каждого человека независимо от его возраста и рода занятий.

Явления мировой культуры, в частности мировые религии, музыка и другие виды искусства, - все это так или иначе влияет на современного человека, формируя его вкусы и пристрастия и тем самым определяя образ его жизни. В конечном счете мировая культура также является одним из факторов окружающей человека среды, в которой он должен чувствовать себя комфортно, если этого нет. то. значит, адаптация не совершилась, и это обстоятельство уже само по себе способно привести к самым неприятным для здоровья последствиям.

Виды воздействия особых факторов на окружающую среду

К числу особых видов антропогенного воздействия на биосферу относят:

1) загрязнение среды опасными отходами;

2) шумовое воздействие;

3) биологическое загрязнение;

4) воздействие электромагнитных полей и излучений и некоторые другие виды воздействий.

Загрязнение среды отходами производства и потребления

Одной из наиболее острых экологических проблем в настоящее время является загрязнение окружающей природной среды отходами производства и потребления и в первую очередь опасными отходами. Сконцентрированные в отвалах, хвостохранилищах, терриконах, несанкционированных свалках отходы являются источником загрязнения атмосферного воздуха, подземных и поверхностных вод, почв и растительности. Все отходы подразделяют на бытовые и промышленные (производственные).

Твердые бытовые отходы (ТБО) - совокупность твердых веществ (пластмасса, бумага, стекло, кожа и др.) и пищевых отбросов, образующихся в бытовых условиях. Промышленные (производственные) отходы (ОП) - это остатки сырья, материалов, полуфабрикатов, образовавшихся при производстве продукции или выполнении работ и утратившие полностью или частично исходные потребительские свойства. Промышленные отходы, так же как и бытовые, из-за недостатка полигонов захоронения в основном вывозятся на несанкционированные свалки. Обезвреживается и утилизируется только 1/5 часть.

Наибольшее количество промышленных отходов образует угольная промышленность, предприятия черной и цветной металлургии, тепловые электростанции, промышленность строительных материалов.

Под опасными отходами понимают отходы, содержащие в своем составе вещества, которые обладают одним из опасных свойств (токсичность, взрывчатость, инфекционность, пожароопасность и т. д.) и присутствуют в количестве, опасном для здоровья людей и окружающей природной среды. В России к опасным отходам относят около 10% от всей массы твердых отходов. Среди них металлические и гальванические шламы, отходы стекловолокна, асбестовые отходы и пыль, остатки от переработки кислых смол, дегтя и гудронов, отработанные радиотехнические изделия и т. д. Наибольшую угрозу для человека и всей биоты представляют опасные отходы, содержащие химические вещества I и П класса токсичности. В первую очередь - это отходы, в составе которых присутствуют радиоактивные изотопы, диоксины, пестициды, бенз(а)пирен и некоторые другие вещества.

Радиоактивные отходы (РАО) - твердые, жидкие или газообразные продукты ядерной энергетики, военных производств, других отраслей промышленности и систем здравоохранения, содержащие радиоактивные изотопы в концентрации, превышающей утвержденные нормы.

Радиоактивные элементы, например стронций-90, передвигаясь по пищевым (трофическим) цепям, вызывают стойкие нарушения жизненных функций, вплоть до гибели клеток и всего организма. Некоторые из радионуклидов могут сохранять смертоносную токсичность в течение 10-100 млн лет.

Огромное количество небольших захоронений радиоактивных отходов (иногда забытых) рассеяно по всему миру. Так, только в США их выявлено несколько десятков тысяч, из которых многие являются активными источниками радиоактивного излучения.

Очевидно, что проблема радиоактивных отходов со временем будет еще более острой и актуальной. В ближайшие 10 лет потребуется демонтаж большого количества АЭС в силу их устареванию. При их демонтаже потребуется обезвредить огромное количество низкоактивных отходов и обеспечить захоронение более 100 тыс. т высокоактивных. Актуальны и проблемы, связанные со списанием кораблей ВМФ с ядерными силовыми установками.

Диоксинсодержащие отходы образуются при сжигании промышленного и городского мусора, бензина со свинцовыми присадками и как побочные продукты в химической, целлюлозно-бумажной и электротехнической промышленности. Установлено, что диоксины образуются также при обезвреживании воды хлорированием, в местах хлорного производства, в особенности при производстве пестицидов.

Диоксины - синтетические органические вещества из класса хлоруглеводородов. Диоксины 2, 3, 7, 8, - ТХДД и диоксиноподобные соединения (более 200) - самые токсичные из полученных человеком веществ. Они обладают мутагенным, канцерогенным, эмбриотоксическим действием; подавляют иммунную систему («диоксиновый СПИД») и в случае получения человеком через продукты питания или в виде аэрозолей достаточно высоких доз вызывают «синдром изнурения» - постепенное истощение и смерть без явно выраженных патологических симптомов. Биологическое действие диоксинов проявляется уже в исключительно низких дозах.

Впервые в мире диоксиновая проблема возникла в США в 30-40 гг. В России производство этих веществ началось вблизи г. Куйбышева и в г. Уфе в 70-е гг., где выпускался гербицид и другие диоксинсодержащие консерванты древесины. Первое крупномасштабное диоксиновое загрязнение окружающей среды зарегистрировано в 1991 г. в районе г. Уфы. Содержание диоксинов в водах р. Уфа более чем в 50 тыс. раз превысило их предельно допустимые концентрации (Голубчиков, 1994). Причина загрязнения воды - поступление фильтрата из уфимской городской свалки промышленных и бытовых от ходов, где по оценочным данным было законсервировано более 40 кг диоксинов. Как следствие, содержание диоксинов в крови, жировой ткани и грудном молоке многих жителей Уфы и Стерлитамака увеличилось в 4-10 раз по сравнению с допустимым уровнем.

Серьезную экологическую опасность для человека и биоты представляют также отходы, содержащие пестициды, бенз(а)пи-рен и другие токсиканты. Кроме того, следует учитывать, что за последние десятилетия человек, качественно изменив химическую обстановку на планете, включил в круговорот совершенно новые, весьма токсичные вещества, экологические последствия от использования которых еще не изучены.

Шумовое воздействие

Шумовое воздействие - одна из форм вредного физического воздействия на окружающую природную среду. Загрязнение среды шумом возникает в результате недопустимого превышения естественного уровня звуковых колебаний. С экологической точки зрения в современных условиях шум становится не просто неприятным для слуха, но и приводит к серьезным физиологическим последствиям для человека. В урбанизированных зонах развитых стран мира от действия шума страдают десятки миллионов людей.

В зависимости от слухового восприятия человека упругие колебания в диапазоне частот от 16 до 20 000 Гц называют звуком, менее 16 Гц - инфразвуком, от 20 000 до 1 10 9 - ультразвуком и свыше 1 10 9 - гиперзвуком. Человек способен воспринять звуковые частоты лишь в диапазоне 16-20 000 Гц.



Единица измерения громкости звука, равная 0,1 логарифма отношения данной силы звука к пороговой (воспринимаемой ухом человека) его интенсивности, называется децибелом (дБ). Диапазон слышимых звуков для человека составляет от 0 до 170 дБ.

Естественные природные звуки на экологическом благополучии человека, как правило, не отражаются. Звуковой дискомфорт создают антропогенные источники шума, которые повышают утомляемость человека, снижают его умственные возможности, значительно понижают производительность труда, вызывают нервные перегрузки, шумовые стрессы и т. д. Высокие уровни шума (> 60 дБ) вызывают многочисленные жалобы, при 90 дБ органы слуха начинают деградировать, 110-120 дБ считается болевым порогом, а уровень антропогенного шума свыше 130 дБ - разрушительный для органа слуха предел. Замечено, что при силе шума в 180 дБ в металле появляются трещины.

Основные источники антропогенного шума - транспорт (автомобильный, рельсовый и воздушный) и промышленные предприятия. Наибольшее шумовое воздействие на окружающую среду оказывает автотранспорт (80% от общего шума).

Многочисленные эксперименты и практика подтверждают, что антропогенное шумовое воздействие неблагоприятно сказывается на организме человека и сокращает продолжительность его жизни, ибо привыкнуть к шуму физически невозможно. Человек может субъективно не замечать звуки, но от этого разрушительное действие его на органы слуха не только не уменьшается, но и усугубляется.

Неблагоприятно влияет на питание тканей внутренних органов и на психическую сферу человека и звуковые колебания с частотой менее 16 Гц (инфразвуки). Так, например, исследования, проведенные датскими учеными, показали, что инфразвуки вызывают у людей состояние, аналогичное морской болезни, особенно при частоте менее 12 Гц.

Шумовое антропогенное воздействие небезразлично и для животных. В литературе имеются данные о том, что интенсивное звуковое воздействие ведет к снижению удоев, яйценоскости кур, потере ориентирования у пчел и к гибели их личинок, преждевременной линьке у птиц, преждевременным родам у зверей, и т. д. В США установлено, что беспорядочный шум мощностью 100 дБ приводит к запаздыванию прорастания семян и к другим нежелательным эффектам.

Биологическое загрязнение

Под биологическим загрязнением понимают привнесение в экосистемы в результате антропогенного воздействия нехарактерных для них видов живых организмов (бактерий, вирусов и др.), ухудшающих условия существования естественных биотических сообществ или негативно влияющих на здоровье человека.

Основными источниками биологического воздействия являются сточные воды предприятий пищевой и кожевенной промышленности, бытовые и промышленные свалки, кладбища, канализационная сеть, поля орошения и др. Из этих источников разнообразные органические соединения и патогенные микроорганизмы попадают в почву, горные породы и подземные воды.

Полученные в последние годы данные позволяют говорить об актуальности и многогранности проблемы биобезопасности. Так, новая экологическая опасность создается в связи с развитием биотехнологии и генной инженерии. При несоблюдении санитарных норм возможно попадение из лаборатории или завода в окружающую природную среду микроорганизмов и биологических веществ, оказывающих весьма вредное воздействие на биотические сообщества, здоровье человека и его генофонд.

Помимо генно-инженерных аспектов, среди актуальных вопросов биобезопасности, имеющих важное значение для сохранения биоразнообразия, выделяют также:

Перенос генетическе информации от домашних форм к диким видам-

Генетический обмен между дикими видами и подвидами, в том числе риск генетического загрязнения генофонда редких и исчезающих видов;

Генетические и экологические последствия преднамеренной и непреднамеренной интродукции животных и растений.

Воздействие электромагнитных полей и излучений

На нынешнем этапе развития научно-технического прогресса человек вносит существенные изменения в естественное магнитное поле, придавая геофизическим факторам новые направления и резко повышая интенсивность своего воздействия. Основные источники этого воздействия - электромагнитные поля от линий электропередач (ЛЭП) и электромагнитные поля от радиотелевизионных и радиолокационных станций.

Отрицательное воздействие электромагнитных полей на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения. Неблагоприятное воздействие электромагнитного поля, создаваемого ЛЭП, проявляется уже при напряженности поля, равной 1000 В/м. У человека нарушаются эндокринная система, обменные процессы, функции головного и спинного мозга и др.

Воздействие неионизирующих электромагнитных излучений от радиотелевизионных и радиолокационных станций на среду обитания человека связано с формированием высокочастотной энергии. Японскими учеными обнаружено, что в районах, расположенных вблизи мощных излучающих теле- и радиоантенн, заметно повышается заболевание катарактой глаз.

В целом можно отметить, что неионизирующие электромагнитные излучения радиодиапазона от радиотелевизионных средств связи, радиолокаторов и других объектов приводят к значительным нарушениям физиологических функций человека и животных.