10 формул сокращенного умножения. Возведение многочленов в квадрат

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.

Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) - формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) - формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

Пример.

Упростите выражение 9·y−(1+3·y) 2 .

Решение.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .

Применяют для упрощения вычислений, а также разложение многочленов на множители, быстрого умножения многочленов. Большинство формул сокращенного умножения можно получить из бинома Ньютона - в этом Вы скоро убедитесь.

Формулы для квадратов применяют в вычислениях чаще. Их начинают изучать в школьной программе начиная с 7 класса и до конца обучения формулы для квадратов и кубов школьники должны знать на зубок.

Формулы для кубов не сильно сложные и их нужно знать при сведении многочленов к стандартному виду, для упрощения подъема суммы или разности переменной и числа к кубу.

Формулы обозначены красным получают из предыдущих группировкой подобных слагаемых.

Формулы для четвертого и пятого степени в школьном курсе мало кому пригодятся, однако есть задачи при изучении высшей математики где нужно вычислять коэффициенты при степенях.


Формулы для степени n расписаны через биномиальные коэффициенты с использованием факториалов следующие

Примеры применения формул сокращенного умножения

Пример 1. Вычислить 51^2.

Решение. Если есть калькулятор то без проблем находите

Это я пошутил - с калькулятором мудрые все, без него... (не будем о грустном).

Не имея калькулятора и зная приведенные выше правила квадрат числа находим по правилу

Пример 2. Найти 99^2.

Решение. Применим вторую формулу

Пример 3. Возвести в квадрат выражение
(x+y-3).

Решение. Сумму первых двух слагаемых мысленно считаем одним слагаемым и по второй формуле сокращенного умножения имеем

Пример 4. Найти разность квадратов
11^2-9^2.

Решение. Поскольку числа небольшие то можно просто подставить значения квадратов

Но цель у нас совсем другая - научиться использовать формулы сокращенного умножения для упрощения вычислений. Для этого примера применим третью формулу

Пример 5. Найти разность квадратов
17^2-3^2 .

Решение. На этом примере Вы уже захотите изучить правила чтобы вычисления свести к одной строке

Как видите - ничего удивительного мы не делали.

Пример 6. Упростить выражение
(x-y)^2-(x+y)^2.

Решение. Можно раскладывать квадраты, а позже сгруппировать подобные слагаемые. Однако можно прямо применить разность квадратов

Просто и без длинных решений.

Пример 7. Возвести в куб многочлен
x^3-4.

Решение . Применим 5 формулу сокращенного умножения

Пример 8. Записать в виде разности квадратов или их сумме
а) x^2-8x+7
б) x^2+4x+29

Решение. а) Перегруппируем слагаемые

б) Упрощаем на основе предыдущих рассуждений

Пример 9. Разложить рациональную дробь

Решение. Применим формулу разности квадратов

Составим систему уравнений для определения констант

К утроенному первому уравнению добавим второе. Найденное значение подставляем в первое уравнение

Окончательно разложение примет вид

Разложить рациональную дробь часто необходимо перед интегрированием, чтобы снизить степень знаменателя.

Пример 10. Используя бином Ньютона расписать
выражение (x-a)^7.

Решение. Что такое бином Ньютона Вы вероятно уже знаете. Если нет то ниже приведены биномиальные коэффициенты

Они образуются следующим образом: по краю идут единицы, коэффициенты между ними в нижней строке образуют суммированием соседних верхних. Если ищем разницу в каком-то степени, то знаки в расписании чередуются от плюса к минусу. Таким образом для седьмого порядка получим такой расклад

Внимательно также посмотрите как меняются показатели - для первой переменной они уменьшаются на единицу в каждом следующем слагаемом, соответственно для второй - на единицу растут. В сумме показатели всегда должны быть равны степени разложения (=7 ).

Думаю на основе приведенного выше материала Вы сможете решить задачи на бином Ньютона. Изучайте формулы сокращенного умножения и применяйте везде, где это может упростить вычисления и сэкономит время выполнения задания.