Проектная работа на тему "ракеты. реактивное движение". Реактивное движение

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения . Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
m s v s +m р v р =0
m s v s =-m р v р

где m s v s импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.

Реактивное движение, видео

И в завершение занимательное видео о физических экспериментах с реактивным движением.

Ракетодинамика - это наука о движении летательных аппаратов, снабжённых реактивными двигателями.

Наиболее важная особенность полёта ракеты с работающим (развивающим тягу) двигателем - существенное изменение её массы во время движения вследствие сгорания топлива. Так, одноступенчатые ракеты в процессе разгона (набора скорости) теряют до 90% первоначальной (стартовой) массы.

Большинство современных ракет оснащаются химическими ракетными двигателями . Такие двигатели могут использовать жидкое, твёрдое или гибридное ракетное топливо. В камере сгорания начинается химическая реакция между топливом и окислителем, в результате получаются горячие газы, которые образуют истекающую реактивную струю, ускоряющуюся в реактивном сопле (или соплах) и выбрасывающуюся из ракеты. В двигателе ускорение этих газов создаёт тягу - толкающую силу, заставляющую ракету двигаться. Принцип реактивного движения описывается третьим законом Ньютона.

Но для движения ракет не всегда используются химические реакции . В паровых ракетах перенагретая вода, вытекающая через сопло, превращается в высокоскоростную паровую струю, которая служит для движения ракеты. Эффективность паровых ракет относительно низка, однако это окупается их простотой и безопасностью, а также дешевизной и доступностью воды. Так в 2004 году была проверена работа небольшой паровой ракеты в космосе на борту спутника UK-DMC. Также существуют проекты использования паровых ракет для межпланетной транспортировки грузов, с нагревом воды за счёт ядерной или солнечной энергии.

Ракеты наподобие паровой, в которых нагрев рабочего тела происходит вне рабочей зоны двигателя, иногда описывают как системы с двигателями внешнего сгорания. Другими примерами ракетных двигателей внешнего сгорания может служить большинство конструкций ядерных ракетных двигателей.

Сама по себе ракета является «затратным» транспортным средством. Ракеты-носители космических аппаратов занимаются в основном «транспортировкой» топлива, необходимого для работы их двигателей, и собственной конструкции, состоящей в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0%) стартовой массы ракеты.

Более рационально использовать ресурсы позволяет составная ракета за счёт того, что в полёте ступень, выработавшая своё топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полёта.

Многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.

Ступени при поперечном разделении размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Эта схема даёт возможность создавать системы, в принципе, с любым количеством ступеней. Недостатком является лишь то, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для неё пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике, от 2 до 8), работающих одновременно и располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сила тяги двигателей первой ступени была направлена по оси симметрии второй. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двухступенчатой.

Есть ещё и комбинированная схема разделения - это продольно-поперечная схема . В ней совмещены преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Примером служит отечественный носитель "Союз".

При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твёрдотопливные ракетные двигатели.

Принцип реактивного движения заключается в том, что этот вид движения возникает тогда, когда происходит отделение с некоторой скоростью, от тела его части. Классическим примером реактивного движения служит движение ракеты. К особенностям данного движения можно отнести то, что тело получает ускорение без взаимодействия с другими телами. Так, движение ракеты происходит за счет изменения ее массы. Масса ракеты уменьшается при истечении газов, которые возникают при сгорании топлива. Рассмотри движение ракеты. Допустим, что масса ракеты равна , а ее скорость в момент времени . Спустя время масса ракеты уменьшается на величину и становится равна: , скорость ракеты становится равной .

Тогда изменение импульса за время можно представить как:

где — скорость истечения газов по отношению к ракете. Если принять, что — величина малая высшего порядка в сравнении с остальными, то получим:

При действии на систему внешних сил () изменение импульса представим как:

Приравниваем правые части формул (2) и (3), получаем:

где выражение — носит название реактивной силы. При этом, если направления векторов и противоположны, то ракета ускоряется, в противном случае она тормозит. Уравнение (4) носит название уравнения движения тела переменной массы. Его часто записывают в виде (уравнение И.В. Мещерского):

Идея использования реактивной силы была предложена еще в XIX веке. Позднее К.Э. Циолковский выдвинул теорию движения ракеты и сформулировал основы теории жидкостного реактивного двигателя. Если положить, что на ракету не действуют внешние силы, то формула (4) получит вид:

Основным и почти единственным средством передвижения в мировом пространстве является ракета, которая для этой цели была впервые предложена в 1903 г. Циолковским . Законы ракетного движения представляют собой один из краеугольных камней теории космического полета.

Эти законы мы прежде всего и рассмотрим.

Космонавтика обладает большим арсеналом ракетных двигательных систем, основанных на использовании различных видов энергии. Но во всех случаях ракетный двигатель осуществляет одну и ту же задачу: он тем или иным способом выбрасывает из ракеты некоторую массу, запас которой (так называемое рабочее тело) находится внутри ракеты. На выбрасываемую массу со стороны ракеты действует некоторая сила, и согласно одному из основных законов механики - закону равенства действия и противодействия - такая же сила, но противоположно направленная, действует со стороны выбрасываемой массы на ракету. Эта последняя сила, приводящая ракету в движение, называется силой тяги.

Интуитивно ясно, что сила тяги должна быть тем больше, чем большая масса в единицу времени выбрасывается из ракеты и чем больше скорость, которую удается сообщить выбрасываемой массе. Может быть строго доказана пропорциональность силы тяги указанным двум величинам, а именно:

Здесь буквой обозначена величина силы тяги, скорость истечения отбрасываемой массы по отношению к ракете, q - величина

массы (но не веса!), расходуемая в единицу времени (секундный расход массы). Если в формуле (1) скорость истечения измерять в а секундный расход массы в то будет получена величина силы тяги в ньютонах

Строго говоря, формула (1) справедлива лишь в том случае, если отбрасываемое вещество находится в твердом или жидком состоянии. Фактически же из ракеты выбрасывается струя газа. Стремясь расшириться, газ оказывает на ракету дополнительное воздействие, которое учитывается в уточненной формуле для силы тяги

Здесь давление газа на срезе сопла двигателя (подробнее об устройстве ракетных двигателей будет сказано ниже), внешнее атмосферное давление, площадь среза сопла. Из последней формулы видно, что по мере подъема ракеты тяга двигателя возрастает, так как давление падает, и вне атмосферы достигает максимума.

Благодаря простоте формулы (1) возникает соблазн продолжать пользоваться ею вместо более точной формулы (1а), считая, что член в ней уже учтен, но понимая под так называемую эффективную скорость истечения, т. е. считая

где Величина определяется экспериментально во время стендовых испытаний ракеты путем замера силы тяги (с помощью динамометра) и секундного расхода массы.

В литературе по ракетной технике наряду с эффективной скоростью истечения употребляется фактически эквивалентное (хотя это и не всегда осознается) понятие удельного импульса.

Чтобы понять, о чем идет речь, нам придется вернуться к уходящим в прошлое понятиям веса и единицы веса

Преобразуем формулу (16), разделив и умножив ее правую часть на ускорение свободного падения на поверхности Земли:

Здесь представляет собой весовой секундный расход, измеряемый в единицах величина называется удельным импульсом и измеряется в т. е. секундах При измерении величин

в правой части формулы (1в) в указанных единицах сила определяется в килограммах силы Разумеется, можно найти силу тяги в и при пользовании формулой (16), если учесть, что

Величина удельного импульса по определению показывает, какой импульс тяги (измеряемый в кгс-с) приходится на каждый килограмм веса расходуемого рабочего тела (отсюда и название «удельный импульс»). Поэтому часто величину удельного импульса указывают в что, конечно, равносильно его измерению в секундах

Можно сказать и иначе: удельный импульс - это количество килограммов тяги, возникающей при расходе одного килограмма веса рабочего тела в секунду Рассуждая так, удельный импульс измеряют в опять-таки в секундах, но при этом называют его удельной тягой (т. е. тягой в приходящейся на весового секундного расхода).

Возможна еще одна трактовка, позволяющая как-то объяснить экзотичность единицы измерения секунда для обсуждаемой величины: удельный импульс - это время, в течение которого расходуется массы рабочего тела, если при этом непрерывно создается тяга в т. е. удельный импульс характеризует экономичность расхода рабочего тела. (Неловкость, испытываемая ракетчиками от единицы измерения секунда заставляет их в практике общения говорить «удельный импульс достиг и ниц», или «удалось увеличить удельный импульс на три единицы»

В связи с повсеместным введением системы в последнее время стали силу тяги измерять в ньютонах а заодно вспомнили, что количество сгорающего вещества, которое создает тягу, естественнее измерять в единицах массы, а не в единицах веса.

В результате вместо стали писать - и измеряемую в этих единицах величину продолжают называть (вопреки первоначальному определению, где в знаменателе фигурировал вес) удельным импульсом или, более длинно, удельным импульсом тяги . Но эта новая величина измеряется в единицах скорости. Да это и есть скорость - хорошо знакомая нам эффективная скорость истечения!

удельный импульс тяги эффективная скорость истечения Здесь знак означает полную тождественность понятий.

В дальнейшем мы при теоретических рассуждениях будем пользоваться только понятием эффективной скорости истечения (иногда

для краткости опуская слово «эффективная»), но, сообщая откуда-либо заимствованные технические данные, иногда будем употреблять наряду с ним и термин удельный импульс, имея всегда в виду, что оба они характеризуют один и тот же физический параметр, отличаясь друг от друга, как это видно из формулы (1в), лишь размерным множителем.

Запомним:

или в виде, удобном для численных прикидок,

(правая часть здесь завышена на

Кроме силы тяги ракетного двигателя (или суммарной тяги сразу нескольких двигателей) на космический летательный аппарат действуют еще многие силы: притяжения Земли и небесных тел, сопротивление атмосферы, световое давление и т. д. Эффект действия всех сил выражается в ускорении, которое получает аппарат. Это результирующее ускорение складывается из ускорений, сообщаемых каждой силой в отдельности. Эффекты действия различных сил мы подробно рассмотрим в последующих главах, а сейчас нас будет интересовать только ускорение от тяги, или реактивное ускорение Согласно второму закону механики где величина силы тяги, масса ракеты или космического аппарата в некоторый момент времени. Эта масса по мере израсходования рабочего тела, конечно, уменьшается, а значит, реактивное ускорение, вообще говоря, увеличивается (чтобы оно не изменялось, нужно было бы одновременно уменьшать соответствующим образом силу тяги). Удобной характеристикой ракеты является начальное реактивное ускорение, сообщаемое силой тяги в момент начала движения: где начальная масса ракеты.

Реактивное ускорение (в частности, начальное реактивное ускорение) представляет собой то ускорение, которым обладала бы ракета, если бы на нее не действовали никакие иные силы кроме силы тяги, т. е. если бы она, по выражению Циолковского, находилась в воображаемом «свободном» пространстве. Реально такие условия, конечно, нигде в Солнечной системе не осуществляются, однако представление о пространстве, свободном от действия всяких сил, полезно.

Поместим мысленно нашу ракету в свободное пространство и включим ее двигатель. Двигатель создал тягу, ракета получила какое-то ускорение и начала набирать скорость, двигаясь по прямой линии (если сила тяги не меняет своего направления). Какую скорость приобретет ракета к моменту, когда ее масса уменьшится от начальной до конечной величины ? Если допустить, что скорость истечения вещества из ракеты неизменна (это довольно

точно соблюдается в современных ракетах), то ракета разовьет скорость выражающуюся формулой Циолковского:

где обозначает натуральный, десятичный логарифмы, или

где число основание натуральных логарифмов.

Скорость, вычисляемая по формуле Циолковского, характеризует энергетические ресурсы ракеты. Она называется идеальной. Мы видим, что идеальная скорость не зависит от секундного расхода массы рабочего тела, а зависит только от скорости истечения и от числа называемого отношением масс или числом Циолковского.

В литературе часто числом Циолковского называют также другую величину, а именно отношение массы израсходованного рабочего тела к конечной массе тк. Очевидно, и

Нередко нас будет интересовать отношение (обычно выраженное в процентах) массы рабочего тела к начальной массе ракеты:

Зададимся определенным значением скорости истечения Тогда, если секундный расход велик (и, следовательно, велика тяга), ракета быстрее израсходует рабочее тело и приобретет идеальную скорость. Если же секундный расход мал (мала тяга), то на израсходование всего рабочего тела потребуется гораздо больше времени. Но поскольку в обоих случаях скорость истечения была одинакова, то и приобретенная в конечном счете идеальная скорость будет также одинаковой.

Конечно, этот вывод верен лишь для воображаемого свободного от сил пространства. В реальных же условиях вмешательство посторонних сил приводит к тому, что приобретенная ракетой скорость отличается от идеальной. Это отличие особенно велико, когда сила тяги мала. Когда же сила тяги и секундный расход велики, то за короткое время, пока расходуется рабочее тело, действие посторонних сил (не слишком значительных по сравнению с силой тяги) скажется слабо на движении и приобретенная ракетой скорость будет сравнительно мало отличаться от идеальной

Величина реактивного ускорения показывает, для каких космических операций может быть применен двигатель того или иного типа. Например, для резких маневров нужен двигатель, создающий значительное реактивное ускорение. Двигатель с малым реактивным ускорением не может даже оторвать космический аппарат от поверхности Земли. Условно все двигатели могут быть разделены на два класса: двигатели большой тяги (точнее, большого реактивного ускорения), создающие реактивное ускорение, превышающее и двигатели малой тяги (точнее, малого реактивного ускорения), создающие реактивное ускорение, меньшее (Чаще всего под «двигателями малой тяги» понимают двигатели, создающие реактивные ускорения в тысячи раз меньшие

Часто двигательные системы характеризуют их удельным весом, под которым понимают отношение веса двигательной системы к величине создаваемой ею тяги. Чем выше удельный вес двигателя, тем меньше создаваемое им реактивное ускорение, тем менее он выгоден. В дальнейшем мы будем характеризовать двигательные системы главным образом реактивными ускорениями.

Не менее важной характеристикой является скорость истечения Чем больше скорость истечения, тем больше идеальная скорость и тем более пригодна двигательная система для осуществления сложных операций в космосе.

Наконец, большая скорость истечения при заданном значении скорости позволяет ограничиться не слишком большим значением числа Циолковского Это позволяет разместить в ракете большую полезную нагрузку, уменьшив массу рабочего тела.