Через две параллельные прямые. Признаки и свойства параллельных прямых

Параллельность двух прямых можно доказать на основе теоремы, согласно которой, два проведенных перпендикуляра по отношению к одной прямой, будут параллельны. Существуют определенные признаки параллельности прямых – всего их три, и все их мы рассмотрим более конкретно.

Первый признак параллельности

Прямые параллельны, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны.

Допустим, при пересечении прямых АВ и СD прямой линией ЕF, были образованы углы /1 и /2. Они равны, так как прямая линия ЕF проходит под одним уклоном по отношению к двум остальным прямым. В местах пересечения линий, ставим точки Ки L – у нас получился отрезок секущей ЕF. Находим его середину и ставим точку О (черт. 189).

На прямую АВ опускаем перпендикуляр из точки О. Назовем его ОМ. Продолжаем перпендикуляр до тех пор, пока он не пересечется с прямой СD. В результате, первоначальная прямая АВ строго перпендикулярна МN, а это значит, что и СD_|_МN, но это утверждение требует доказательства. В результате проведения перпендикуляра и линии пересечения, у нас образовалось два треугольника. Один из них – МОЕ, второй – NОК. Рассмотрим их более подробно. признаки параллельности прямых 7 класс

Данные треугольники равны, поскольку, в соответствии с условиями теоремы, /1 =/2, а в соответствии с построением треугольников, сторона ОK = стороне ОL. Угол МОL =/NОК, поскольку это вертикальные углы. Из этого следует, что сторона и два угла, прилежащие к ней одного из треугольников соответственно равны стороне и двум углам, прилежащим к ней, другого из треугольников. Таким образом, треугольник МОL =треугольникуNОК, а значит, и угол LМО = углу КNО, но нам известно, что/LМО прямой, значит, и соответствующий ему, угол КNО тоже прямой. То есть, нам удалось доказать, что к прямой МN, как прямая АВ, так и прямая СD перпендикулярны. То есть, АВ и СD по отношению друг к другу являются параллельными. Это нам и требовалось доказать. Рассмотрим остальные признаки параллельности прямых (7 класс), которые отличаются от первого признака по способу доказательства.

Второй признак параллельности

Согласно второму признаку параллельности прямых, нам необходимо доказать, что углы, полученные в процессе пересечения параллельных прямых АВ и СD прямой ЕF, будут равны. Таким образом, признаки параллельности двух прямых, как первый, так и второй, основывается на равности углов, получаемых при пересечении их третьей линией. Допускаем, что /3 = /2, а угол 1 = /3, поскольку он вертикален ему. Таким образом, и /2 будет равен углу1, однако следует учитывать, что как угол 1, так и угол 2 являются внутренними, накрест лежащими углами. Следовательно, нам остается применить свои знания, а именно то, что два отрезка будут параллельными, если при их пересечении третьей прямой образованные, накрест лежащие углы будут равными. Таким образом, мы выяснили, что АВ || СD.

Нам удалось доказать, что при условии параллельности двух перпендикуляров к одной прямой, согласно соответствующей теореме, признак параллельности прямых очевиден.

Третий признак параллельности

Существует еще и третий признак параллельности, который доказывается посредством суммы односторонних внутренних углов. Такое доказательство признака параллельности прямых позволяет сделать вывод, что две прямые будут параллельны, если при пересечении их третье прямой, сумма полученных односторонних внутренних углов, будет равна 2d. См. рисунок 192.

Они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || С E

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой .

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB . Опустим на AB из точки С перпендикуляр С D и затем проведем С E ^ С D , что возможно. Прямая CE параллельна AB .

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M . Тогда из точки M к прямой С D мы имели бы два различных перпендикуляра M D и , что невозможно. Значит, CE не может пересечься с AB , т.е. С E параллельна AB .

Следствие.

Два перпендикуляра (С E и DB ) к одной прямой (С D ) параллельны.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Так, если прямая С D , проведенная через точку С параллельна прямой AB , то всякая другая прямая С E , проведенная через ту же точку С , не может быть параллельна AB , т.е. она при продолжении пересечется с AB .

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (С E ) пересекается с одной из параллельных (СВ ), то она пересекается и с другой (AB ), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB , что невозможно.

2. Если каждая из двух прямых (A и B ) параллельны одной и той же третьей прямой (С ) , то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M , то тогда через эту точку проходили бы две различные прямые, параллельные С , что невозможно.

Теорема .

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной .

Пусть AB || С D и EF ^ AB .Требуется доказать, что EF ^ С D .

Перпендикуляр E F , пересекаясь с AB , непременно пересечет и С D . Пусть точка пересечения будет H .

Предположим теперь, что С D не перпендикулярна к EH . Тогда какая-нибудь другая прямая, например HK , будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB : одна С D , по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH .

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

На плоскости прямые называются параллельными, если у них нет общих точек, то есть они не пересекаются. Для обозначения параллельности используют специальный значок || (параллельные прямые a || b).

Для прямых, лежащих в пространстве, требования отсутствия общих точек недостаточно - чтобы они в пространстве были параллельными, они должны принадлежать одной плоскости (иначе они будут скрещивающимися).

За примерами параллельных прямых далеко идти не надо, они сопровождают нас повсюду, в комнате - это линии пересечения стены с потолком и полом, на тетрадном листе - противоположные края и т.д.

Совершенно очевидно, что, имея параллельность двух прямых и третью прямую, параллельную одной из первых двух, она будет параллельна и второй.

Параллельные прямые на плоскости связаны утверждением, которое не доказывается с помощью аксиом планиметрии. Его принимают как факт, в качестве аксиомы: для любой точки на плоскости, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной. Эту аксиому знает каждый шестиклассник.

Ее пространственное обобщение, то есть утверждение, что для любой точки в пространстве, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной, легко доказывается с помощью уже известной нам аксиомы параллельности на плоскости.

Свойства параллельных прямых

  • Если любая из параллельных двух прямых параллельна третьей, то они взаимно параллельны.

Этим свойством обладают параллельные прямые и на плоскости, и в пространстве.
В качестве примера рассмотрим его обоснование в стереометрии.

Допустим параллельность прямых b и с прямой a.

Случай, когда все прямые лежат в одной и той же плоскости оставим планиметрии.

Предположим, a и b принадлежат плоскости бетта, а гамма - плоскость, которой принадлежат a и с (по определению параллельности в пространстве прямые должны принадлежать одной плоскости).

Если допустить, что плоскости бетта и гамма различные и отметить на прямой b из плоскости бетта некую точку B, то плоскость, проведенная через точку B и прямую с должна пересечь плоскость бетта по прямой (обозначим ее b1).

Если бы полученная прямая b1 пересекала плоскость гамма, то, с одной стороны, точка пересечения должна была бы лежать на a, поскольку b1 принадлежит плоскости бетта, а с другой, она должна принадлежать и с, поскольку b1 принадлежит третьей плоскости.
Но ведь параллельные прямые a и с пересекаться не должны.

Таким образом, прямая b1 должна принадлежать плоскости бетта и при этом не иметь общих точек с a, следовательно, согласно аксиоме параллельности, она совпадает с b.
Мы получили совпадающую с прямой b прямую b1, которая принадлежит одной и той же плоскости с прямой с и при этом ее не пересекает, то есть b и с - параллельны

  • Через точку, которая не лежит на заданной прямой, параллельная данной может проходить лишь одна единственная прямая.
  • Лежащие на плоскости перпендикулярно третьей две прямые параллельны.
  • При условии пересечения плоскости одной из параллельных двух прямых, эту же плоскость пересекает и вторая прямая.
  • Соответствующие и накрест лежащие внутренние углы, образованные пересечением параллельных двух прямых третьей, равны, сумма у образовавшихся при этом внутренних односторонних равна 180°.

Верны и обратные утверждения, которые можно принять за признаки параллельности двух прямых.

Условие параллельности прямых

Сформулированные выше свойства и признаки представляют собой условия параллельности прямых, и их вполне можно доказать методами геометрии. Иначе говоря, для доказательства параллельности двух имеющихся прямых достаточно доказать их параллельность третьей прямой либо равенство углов, будь то соответствующих или накрест лежащих, и т.п.

Для доказательства в основном используют метод «от противного», то есть с допущения, что прямые непараллельны. Исходя из этого допущения, легко можно показать, что в этом случае нарушаются заданные условия, например, накрест лежащие внутренние углы оказываются неравными, что и доказывает некорректность сделанного допущения.