История развития комп техники. Помощь по информатике. · Габариты: ЭВМ выполнена в виде громоздких шкафов и занимает специальный машинный зал

В короткой истории компьютерной техники выделяют несколько периодов на основе того, какие основные элементы использовались для изготовления компьютера. Временное деление на периоды в определенной степени условно, т.к. когда еще выпускались компьютеры старого поколения, новое поколение начинало набирать обороты.

Можно выделить общие тенденции развития компьютеров:

  1. Увеличение количества элементов на единицу площади.
  2. Уменьшение размеров.
  3. Увеличение скорости работы.
  4. Снижение стоимости.
  5. Развитие программных средств, с одной стороны, и упрощение, стандартизация аппаратных – с другой.

Нулевое поколение. Механические вычислители

Предпосылки к появлению компьютера формировались, наверное, с древних времен, однако нередко обзор начинают со счетной машины Блеза Паскаля, которую он сконструировал в 1642 г. Эта машина могла выполнять лишь операции сложения и вычитания. В 70-х годах того же века Готфрид Вильгельм Лейбниц построил машину, умеющую выполнять операции не только сложения и вычитания, но и умножения и деления.

В XIX веке большой вклад в будущее развитие вычислительной техники сделал Чарльз Бэббидж. Его разностная машина , хотя и умела только складывать и вычитать, зато результаты вычислений выдавливались на медной пластине (аналог средств ввода-вывода информации). В дальнейшем описанная Бэббиджем аналитическая машина должна была выполнять все четыре основные математические операции. Аналитическая машина состояла из памяти, вычислительного механизма и устройств ввода-вывода (прямо таки компьютер … только механический), а главное могла выполнять различные алгоритмы (в зависимости от того, какая перфокарта находилась в устройстве ввода). Программы для аналитической машины писала Ада Ловлейс (первый известный программист). На самом деле машина не была реализована в то время из-за технических и финансовых сложностей. Мир отставал от хода мыслей Бэббиджа.

В XX веке автоматические счетные машины конструировали Конрад Зус, Джорж Стибитс, Джон Атанасов. Машина последнего включала, можно сказать, прототип ОЗУ, а также использовала бинарную арифметику. Релейные компьютеры Говарда Айкена: «Марк I» и «Марк II» были схожи по архитектуре с аналитической машиной Бэббиджа.

Первое поколение. Компьютеры на электронных лампах (194х-1955)

Быстродействие: несколько десятков тысяч операций в секунду.

Особенности:

  • Поскольку лампы имеют существенные размеры и их тысячи, то машины имели огромные размеры.
  • Поскольку ламп много и они имеют свойство перегорать, то часто компьютер простаивал из-за поиска и замены вышедшей из строя лампы.
  • Лампы выделяют большое количество тепла, следовательно, вычислительные машины требуют специальные мощные охладительные системы.

Примеры компьютеров:

Колоссус – секретная разработка британского правительства (в разработке принимал участие Алан Тьюринг). Это первый в мире электронный компьютер, хотя и не оказавший влияние на развитие компьютерной техники (из-за своей секретности), но помог победить во Второй мировой войне.

Эниак . Создатели: Джон Моушли и Дж. Преспер Экерт. Вес машины 30 тонн. Минусы: использование десятичной системы счисления; множество переключателей и кабелей.

Эдсак . Достижение: первая машина с программой в памяти.

Whirlwind I . Слова малой длины, работа в реальном времени.

Компьютер 701 (и последующие модели) фирмы IBM. Первый компьютер, лидирующий на рынке в течение 10 лет.

Второе поколение. Компьютеры на транзисторах (1955-1965)

Быстродействие: сотни тысяч операций в секунду.

По сравнению с электронными лампами использование транзисторов позволило уменьшить размеры вычислительной техники, повысить надежность, увеличить скорость работы (до 1 млн. операций в секунду) и почти свести на нет теплоотдачу. Развиваются способы хранения информации: широко используется магнитная лента, позже появляются диски. В этот период была замечена первая компьютерная игра.

Первый компьютер на транзисторах TX стал прототипом для компьютеров ветки PDP фирмы DEC, которые можно считать родоначальниками компьютерной промышленности, т.к появилось явление массовой продажи машин. DEC выпускает первый миникомпьютер (размером со шкаф). Зафиксировано появление дисплея.

Фирма IBM также активно трудится, производя уже транзисторные версии своих компьютеров.

Компьютер 6600 фирмы CDC, который разработал Сеймур Крей, имел преимущество над другими компьютерами того времени – это его быстродействие, которое достигалось за счет параллельного выполнения команд.

Третье поколение. Компьютеры на интегральных схемах (1965-1980)

Быстродействие: миллионы операций в секунду.

Интегральная схема представляет собой электронную схему, вытравленную на кремниевом кристалле. На такой схеме умещаются тысячи транзисторов. Следовательно, компьютеры этого поколения были вынуждены стать еще мельче, быстрее и дешевле.

Последнее свойство позволяло компьютерам проникать в различные сферы деятельности человека. Из-за этого они становились более специализированными (т.е. имелись различные вычислительные машины под различные задачи).

Появилась проблема совместимости выпускаемых моделей (программного обеспечения под них). Впервые большое внимание совместимости уделила компания IBM.

Было реализовано мультипрограммирование (это когда в памяти находится несколько выполняемых программ, что дает эффект экономии ресурсов процессора).

Дальнейшее развитие миникомпьютеров (PDP-11 ).

Четвертое поколение. Компьютеры на больших (и сверхбольших) интегральных схемах (1980-…)

Быстродействие: сотни миллионов операций в секунду.

Появилась возможность размещать на одном кристалле не одну интегральную схему, а тысячи. Быстродействие компьютеров увеличилось значительно. Компьютеры продолжали дешеветь и теперь их покупали даже отдельные личности, что ознаменовало так называемую эру персональных компьютеров. Но отдельная личность чаще всего не была профессиональным программистом. Следовательно, потребовалось развитие программного обеспечения, чтобы личность могла использовать компьютер в соответствие со своей фантазией.

В конце 70-х – начале 80-х популярностью пользовался компьютера Apple , разработанный Стивом Джобсом и Стивом Возняком. Позднее в массовое производство был запущен персональный компьютер IBM PC на процессоре Intel.

Позднее появились суперскалярные процессоры, способные выполнять множество команд одновременно, а также 64-разрядные компьютеры.

Пятое поколение?

Сюда относят неудавшийся проект Японии (хорошо описан в Википедии). Другие источники относят к пятому поколению вычислительных машин так называемые невидимые компьютеры (микроконтроллеры, встраиваемые в бытовую технику, машины и др.) или карманные компьютеры.

Также существует мнение, что к пятому поколению следует относить компьютеры с двухядерными процессорами. С этой точки зрения пятое поколение началось примерно с 2005 года.

Одним из первых устройств (V-IV вв. до н.э.), с которых, можно считать, началась история развития компьютеров, была специальная доска, названная впоследствии «абак». Вычисления на ней проводились перемещением костей или камней в углублениях досок из бронзы, камня, слоновой кости и тому подобное. В Греции абак существовал уже в V в. до н.э., у японцев он назывался «серобаян», у китайцев — «суанпань». В Древней Руси для счета применялось устройство, похожее на абак, — «дощаный счет». В XVII веке этот прибор принял вид привычных российских счетов.

Абак (V-IV вв. до н.э.)

Французский математик и философ Блез Паскаль в 1642 г. создал первую машину, получившую в честь своего создателя название — Паскалина. Механическое устройство в виде ящика со многими шестернями кроме сложения выполняла и вычитание. Данные вводились в машину с помощью поворота наборных колесиков, которые отвечали числам от 0 до 9. Ответ появлялся в верхней части металлического корпуса.


Паскалина

В 1673 году Готфрид Вильгельм Лейбниц создал механическое счетное устройство (ступенчатый вычислитель Лейбница — калькулятор Лейбница), которое впервые не только складывало и вычитало, а еще умножало, делило и вычисляло квадратный корень. Впоследствии колесо Лейбница стало прототипом для массовых счетных приборов — арифмометров.


Модель ступенчатого вычислителя Лейбница

Английский математик Чарльз Бэббидж разработал устройство, которое не только выполняло арифметические действия, но и сразу же печатало результаты. В 1832 г. была построена десятикратно уменьшенная модель из двух тысяч латунных деталей, которая весила три тонны, но была способна выполнять арифметические операции с точностью до шестого знака после запятой и вычислять производные второго порядка. Эта вычислительная машина стала прообразом настоящих компьютеров, называлась она дифференциальной машиной.

Дифференциальная машина

Суммирующий аппарат с непрерывной передачей десятков создает российский математик и механик Пафнутий Львович Чебышев. В этом аппарате достигнута автоматизация выполнения всех арифметических действий. В 1881 году была создана приставка к суммирующему аппарату для умножения и деления. Принцип непрерывной передачи десятков широко использовался в различных счетчиках и вычислительных машинах.


Суммирующий аппарат Чебышева

Автоматизированная обработка данных появилась в конце прошлого века в США. Герман Холлерит создал устройство — Табулятор Холлерита — в котором , нанесенная на перфокарты, расшифровывалось электрическим током.

Табулятор Холлерита

В 1936 году молодой ученый из Кембриджа Алан Тьюринг придумал мысленный счетный аппарат-компьютер, который существовал только на бумаге. Его «умная машина» действовала по определенному заданному алгоритму. В зависимости от алгоритма, воображаемая машина могла применяться для самых разнообразных целей. Однако в то время это были чисто теоретические рассуждения и схемы, которые послужили прототипом программируемого компьютера, как вычислительного устройства, которое обрабатывает данные в соответствии с определенной последовательностью команд.

Информационные революции в истории

В истории развития цивилизации произошло несколько информационных революций — преобразований социальных общественных отношений вследствие изменений в области обработки, сохранения и передачи информации.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку цивилизации. Появилась возможность передачи знаний от поколений к поколениям.

Вторая (середина XVI в.) революция вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) революция с открытиями в области электричества, благодаря чему появились телеграф, телефон, радио, устройства, которые позволяют оперативно передавать и накапливать информацию в любом объеме.

Четвертая (с семидесятых годов XX в.) революция связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, системы передачи данных (информационные коммуникации).

Этот период характеризуют три фундаментальные инновации:

  • переход от механических и электрических средств преобразования информации к электронным;
  • миниатюризация всех узлов, устройств, приборов, машин;
  • создание программно-управляемых устройств и процессов.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые . Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе (Konrad Zuse) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Первое поколение — ЭВМ с электронными лампами

Colossus I — первая вычислительная машина на лампах, созданная англичанами в 1943 г., для раскодирования немецких военных шифров; она состояла из 1800 электронных ламп — устройств для хранения информации — и была одним из первых программируемых электронных цифровых компьютеров.

ENIAC — был создан для расчета артиллерийских таблиц баллистики; этот компьютер весил 30 тонн, занимал 1000 квадратных футов и потреблял 130-140 кВт электроэнергии. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов, и содержались они в шкафах общим объемом около 100 м 3 . ENIAC имел производительность 5000 операций в секунду. Общая стоимость машины составляла $ 750 000. Потребность в потребления электричества — 174 кВт, общее занимаемое пространство — 300 м 2 .


ENIAC — устройство для расчета артиллерийских таблиц баллистики

Еще один представитель 1-го поколения ЭВМ, на который следует обратить внимание, это EDVAC (Electronic Discrete Variable Computer). EDVAC интересен тем, что в нем была сделана попытка записывать программы электронным способом в так называемых «ультразвуковых линиях задержки» с помощью ртутных трубок. В 126 таких линиях было возможно сохранять 1024 строк четырехзначных двоичных чисел. Это была «быстрая» память. В качестве «медленной »памяти предполагалось фиксировать числа и команды на магнитном проводе, однако этот метод оказался ненадежным, и пришлось вернуться к телетайпным лентам. EDVAC работал быстрее своего предшественника, сложение занимало 1 мкс, деление — 3 мкс. Он содержал всего 3,5 тыс. электронных ламп и располагался на 13 м 2 площади.

UNIVAC (Universal Automatic Computer) представлял собой электронное устройство с программами, хранящимися в памяти, которые вводились туда уже не с перфокарт, а с помощью магнитной ленты; это обеспечивало высокую скорость чтения и записи информации, а, следовательно, и более высокое быстродействие машины в целом. Одна лента могла содержать миллион символов, записанных в двоичной форме. Ленты могли хранить и программы, и промежуточные данные.


Представители I-го поколения ЭВМ: 1) Electronic Discrete Variable Computer; 2) Universal Automatic Computer

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом (junction transistor). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!


Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах («Раздан-2», «Минск — 2», «М-220» и «Днепр») находились еще в стадии разработки.

Третье поколение — малогабаритные ЭВМ на интегральных схемах

В 50-х и 60-х годах сборка электронного оборудования представляла трудоемкий процесс, который замедлялся возрастающей сложностью электронных схем. Так, например, компьютер типа CD1604 (1960 , Control Data Corp.) , содержал около 100 тыс. диодов и 25 тыс. транзисторов.

В 1959 американцы Джек Сент Клэр Килби (фирма Texas Instruments) и Роберт Н. Нойс (фирма Fairchild Semiconductor) независимо друг от друга изобрели интегральную схему (ИС) — совокупность тысяч транзисторов, размещенных на одном кристалле кремния внутри микросхемы.

Производство компьютеров на ИС (микросхемами их стали называть позже) было гораздо дешевле, чем на транзисторах. Благодаря этому многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения различных задач. В эти годы производство компьютеров приобрело промышленные масштабы.

В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах.


Представитель III-го поколения ЭВМ — ЕС-1022

Четвертое поколение — персональные компьютеры на процессорах

Предшественниками IBM PC были Apple II, Radio Shack TRS-80, Atari 400 и 800, Commodore 64 и Commodore PET.

Рождения персональных компьютеров (ПК, PC) с полным основанием связывают с процессорами Intel. Корпорация была основана в середине июня 1968 г. с тех пор Intel превратилась в крупнейшего в мире производителя микропроцессоров с числом сотрудников более 64 тысяч. Целью Intel было создание полупроводниковой памяти и, чтобы выжить, фирма стала брать и сторонние заказы на разработку полупроводниковых устройств.

В 1971 г.. Intel получила заказ на разработку набора из 12 микросхем для программируемых микрокалькуляторов, но инженерам Intel создание 12 специализированных чипов показалось громоздким и неэффективным. Задача сокращения номенклатуры микросхем была решена путем создания «спарки» с полупроводниковой памяти и исполнительного устройства, способного работать по командам, хранящимся в ней. Это был прорыв в философии создания вычислительных средств: универсальное логическое устройство в виде 4-разрядного центрального процессорного устройства i4004, который позже был назван первый микропроцессором. Он представлял собой набор из 4 чипов, в числе которых был один чип, управляемый командами, которые хранились в полупроводниковой внутренней памяти.

Как коммерческая разработка, микрокомпьютер (так тогда называлась микросхема) появился на рынке 11 ноября 1971 под названием 4004: 4 битный, содержащий 2300 транзисторов, тактовая частота 60 кГц, стоимость — $ 200. В 1972 г. компания Intel выпустила восьмибитный микропроцессор 8008, а в 1974 г. — его усовершенствованную версию Intel-8080, которая к концу 70-х годов стала стандартом для микрокомпьютерной индустрии. Уже в 1973 году во Франции появляется первый компьютер на базе процессора 8080 — Micral. По разным причинам этот процессор не имел успеха в Америке (в Советском Союзе он был скопирован и выпускался долгое время под названием 580ВМ80). Тогда же группа инженеров ушла из Intel и образовала фирму Zilog. Наиболее громким ее продуктом является Z80, который имеет расширенный набор команд 8080 и, что обеспечило его коммерческий успех для бытовых приборов, обходился одним напряжением питания 5В. На его основе был создан, в частности, компьютер ZX-Spectrum (иногда его называют по имени создателя — Sinclair), ставший практически прообразом Home PC середины 80-х. В 1981 г. Intel выпускает 16-разрядный процессор 8086 и 8088 — аналог 8086, за исключением внешней 8-битной шины данных (вся периферия тогда была еще 8-битной).

Конкурент Intel, компьютер Apple II отличался тем, что не был вполне законченным аппаратом и оставалась некоторая свобода для доработки непосредственно пользователем — можно было устанавливать дополнительные интерфейсные платы, платы памяти и др. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», стала его основным преимуществом. Успеху Apple II способствовали еще две новинки, разработаные в 1978 году. Недорогой накопитель на гибких дисках, и первая программа для коммерческих расчетов — электронная таблица VisiCalc.

Большой популярностью в 70-х годах пользовался компьютер Altair-8800, построенный на основе процессора Intel -8080. Хотя возможности Altair были довольно ограничены — оперативная память составляла всего 4 Kb, клавиатура и экран отсутствовали, его появление было встречено с большим энтузиазмом. Он был выпущен на рынок в 1975 году, и в первые месяцы было продано несколько тысяч комплектов машины.


Представители IV -го поколения ЭВМ: а) Micral; б) Apple II

Этот компьютер, разработанный фирмой MITS, продавался по почте в виде набора деталей для самостоятельной сборки. Весь комплект для сборки стоил $ 397, тогда как только один процессор от Intel продавался за $360.

Распространение ПК к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ — фирма IBM в 1979 выпустила IBM PC на базе процессора 8088. Существующее в начале 80-х годов программное обеспечение было ориентировано на обработку текстов и простых электронных таблиц, а сама мысль о том, что «микрокомпьютер» может стать привычным и необходимым устройством на работе и дома, казалась невероятной.

12 августа 1981 года IBM представила Personal Computer (PC), ставший, в сочетании с программным обеспечением от Microsoft, стандартом для всего парка ПК современного мира. Цена модели IBM PC с монохромным дисплеем составила около $3.000, с цветным — $6.000. Конфигурация IBM PC: процессор Intel 8088 с частотой 4,77 МГц и 29 тысячами транзисторов, 64 Кб оперативной памяти, 1 флоппи-дисковод емкостью 160 Кб, — обычный встроенный динамик. В это время запуск приложений и работа с ними были настоящей мукой: из-за отсутствия жесткого диска приходилось все время менять дискеты, не было ни «мыши», ни графического оконного пользовательского интерфейса, ни точного соответствия между изображением на экране и конечным результатом (WYSIWYG). Цветная графика была крайне примитивна, о трехмерной анимации или фотообработке не было и речи, однако история развития персональных компьютеров началась именно с этой модели.

В 1984 году IBM представила еще две новинки. Во-первых, была выпущена модель для домашних пользователей, названная PCjr на базе процессора 8088, котрая была оснащена едва ли не первой беспроводной клавиатурой, но успеха на рынке эта модель не добилась.

Вторая новинка — IBM PC AT. Важнейшая особенность: переход на микропроцессоры более высоких уровней (80286 с цифровым сопроцессором 80287) с сохранением совместимости с предыдущими моделями. Этот компьютер оказался законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядная шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит.

В 1984 г. состоялся выпуск первых компьютеров Macintosh с графическим интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. Пользователей новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными компонентами. А в тогдашних корпорациях уже стали нормальными рабочими инструментами WordPerfect и Lotus 1-2-3. Пользователи уже привыкли и приспособились к символьному интерфейса DOS. С их точки зрения, Macintosh выглядел даже как-то несерьезно.

Пятое поколение компьютеров (с 1985 и по наше время)

Отличительные признаки V -го поколения:

  1. Новые технологии производства.
  2. Отказ от традиционных языков программирования таких, как Кобол и Фортран в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Пролог и Лисп).
  3. Акцент на новые архитектуры (например, на архитектуру потока данных).
  4. Новые способы ввода-вывода, удобные для пользователя (например, распознавание речи и образов, синтеза речи, обработка сообщений на естественном языке)
  5. Искусственный интеллект (то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями)

Именно на рубеже 80-90-х сформировался альянс Windows-Intel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их объединяла совместимость с Windows и процессоры от Intel.

В 1989 г. был выпущен процессор i486. Он имел встроенный математический сопроцессор, конвейер и встроенный кэш первого уровня.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство, возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Жизнь человек в двадцать первом веке напрямую связана с искусственным интеллектом. Знание основных вех в создании компьютеров – показатель образованного человека. Развитие компьютеров принято делить на 5 этапов — принято говорить о пяти поколениях.

1946-1954годы — вычислительные машины первого поколения

Стоит сказать, что первое поколение ЭВМ (электронных вычислительных машин) было ламповым. Ученые университета в Пенсильвании (США) разработали ЭНИАК — так назывался первый в мире компьютер. Днем, когда он официально введен в строй является 15.02.1946. При сборке аппарата было задействовано 18 тысяч электронных ламп. ЭВМ по нынешним меркам была колоссальна площадь 135 квадратных метров, а вес 30 тонн. Потребности в электроэнергии так же были велики — 150кВт.

Общеизвестный факт — создавалась эта электронная машина непосредственно для помощи в решении сложнейших задач по созданию атомной бомбы. СССР стремительно нагоняло свое отставание и в декабре 1951 года, под руководством и при непосредственном участии академика С. А. Лебедева миру была представлена самая быстрая в Европе ЭВМ. Носила она аббревиатуру МЭСМ (Малая Электронная Счетная Машина). Данный аппарат мог выполнять от 8 до 10 тысяч операций в секунду.

1954 — 1964 годы — вычислительные машины второго поколения

Следующим шагом в развитии стала разработка компьютеров, работающих на транзисторах. Транзисторами называются приборы, созданные из полупроводниковых материалов – позволяющие управлять током, идущим в цепи. Первый известный стабильно работающий транзистор был создан в Америке в 1948 году командой физиков — исследователей Шокли и Бардиным.

По скорости работы электронно-вычислительные машины существенно отличались от предшественников — скорость доходила до сотен тысяч операций в одну секунду. Уменьшились и размеры, да и потребление электрической энергии стало меньше. Также значительно увеличилась сфера использования. Происходило это за счет стремительной разработки программного обеспечения. Наш лучший компьютер – БЭСМ-6 обладала рекордным быстродействием – 1000000 операций в секунду. Разработана в 1965 году под руководством главного конструктора С. А. Лебедева.

1964 — 1971 годы — вычислительные машины третьего поколения

Основным отличием этого периода является начало применения микросхем с малой степенью интеграции. С помощью сложнейших технологий ученые смогли поместить на небольшой полупроводниковой пластине, с площадью меньше 1 сантиметра квадратного, сложные электронные схемы. Изобретение микросхем запатентовано в 1958 году. Изобретатель — Джек Килби. Применение этого революционного изобретения позволило улучшить все параметры – габариты уменьшились примерно до размеров холодильника, быстродействие увеличилось, также как и надежность.

Этот этап в развитии вычислительных машин характеризуется применением в использовании нового запоминающего устройства – магнитного диска. Мини-ЭВМ PDP-8 впервые представлена в 1965 году.

В СССР подобные версии появились гораздо позже — в 1972 году и являлись аналогами моделей, представленных на американском рынке.

1971 год — современность — вычислительные машины четвертого поколения

Инновацией в вычислительных машинах четвертого поколения является применение и использование микропроцессоров. Микропроцессоры представляют собой АЛУ (арифметически-логические устройства), помещенные на одну микросхему и имеющие высокую степень интеграции. Это значит, что микросхемы начинают занимать еще меньше места. Иными словами, микропроцессор – это маленький мозг, выполняющий миллионы операций в секунду по заложенной в него программе. Размеры, вес и потребление мощности резко уменьшились, а быстродействие достигло рекордных высот. И именно тогда в игру включился Intel.

Первый микропроцессор назывался Intel-4004 — название первого микропроцессора, собранного в 1971 году. Он имел разрядность 4 бита, но тогда являлся гигантским технологическим прорывом. Два года спустя Intel представил миру Intel-8008, имеющий восемь бит, в 1975 году появился на свет Альтаир-8800 — это первый персональный компьютер, созданный на основе Intel-8008.

Это было началом целой эры персональных компьютеров. Машину стали использоваться повсеместно в совершенно различных целях. Через год в игру вступил Apple. Проект имел большой успех, а Стив Джобс стал одним из самых известных и богатых человек на Земле.

Непререкаемым эталоном компьютера становится IBM PC. Его выпустили в 1981 году имеющим ОЗУ 1 мегабайт.

Примечательно то, что на данный момент IBM-совместимые электронно-вычислительные машины занимают примерно девяностопроцентную долю выпускаемых компьютеров! Также, нельзя не упомянуть про Pentium. Разработка первого процессора со встроенным сопроцессором завершилась успехом в 1989 году. Сейчас эта торговая марка непререкаемый авторитет в разработках и применении микропроцессоров на рынке компьютеров.

Если говорить о перспективах — то это, безусловно, развитие и внедрение новейших технологий: сверхбольших интегральных схем, магнитно-оптических элементов, даже элементов искусственного разума.

Самообучаемые электронные системы — вот обозримое будущее, называемое пятым поколением в развитии компьютеров.

Человек стремится стереть барьер в общении с компьютером. Очень долго и, к сожалению, неудачно работала над этим Япония, но это уже тема совершенно другой статьи. На данный момент все проекты находятся только в разработке, но с современными темпами развития – это недалекое будущее. Настоящее время – время, когда вершится история!

Поделиться.

Рапанович Иван

Исследовательская работа

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное учреждение Ореховская средняя общеобразовательная школа

Школьная научно – практическая конференция школьников «Шаг в будущее »

Выполнил: Рапанович Иван

Ученик 6 класса

Руководитель: Демидова

Надежда Александровна

Орехово 2009 год

ВВЕДЕНИЕ

Счётно - решающие средства до появления ЭВМ

Поколение первое. Компьютеры на электронных лампах

Поколение второе. Транзисторные компьютеры

Поколение третье. Интегральные схемы

ПоКОЛЕНИЕ ЧЕТВЁРТОЕ. бОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Введение.

Необходимость производить вычисления существовала всегда. Люди в стремлении усовершенствовать процесс вычисления изобретали всевозможные приспособления. Об этом свидетельствуют и греческий абак,и русские щоты,и японский серобян, и ещё множество разнообразных устройств. В 17веке были созданы первые механические счётные машины, в 19веке они получили широкое распространение.

Самое удивительное устройство, названное сначала электронно – вычислительной машиной (ЭВМ), а затем компьютером, подарил человеку 20век.

Идея классифицировать машины по поколениям вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появление новых возможностей, расширение областей применения и характера использования.

Цель данной работы заключается : в исследовании истории развития компьютерной техники

Задачи :

выяснить как совершенствовались компьютеры по мере развития;

выяснить, что понимается под «поколением ЭВМ»;

сделать вывод о проделанной работе;

сформировать позитивный интерес к информатике

Счётно - решающие средства до появления ЭВМ.

История вычислений уходит своими корнями в глубь веков так же, как и история человечества. Накопление запасов, делёж добычи, обмен – все эти действия связаны с вычислениями. Для подсчётов люди использовали пальцы, камешки, палочки узелки и т.д.

Одним из первых устройств (5 – 4 века до н.э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком. Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заострённой палочкой можно было писать буквы и цифры. Впоследствии абак был усовершенствован и вычисления на нём уже проводились путём перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. У японцев этот прибор назывался «серобян», у китайцев – «суан - пан».

В Древней Руси при счёте применялось устройство, похожее на абак, и называлось оно «русский щот». В 17 веке этот прибор уже имел вид русских счётов, которые можно встретить и в наши дни.

В начале 17 столетия молодым французским математиком и физиком Блезом Паскалем была изобретена первая в мире счётная машина, названная Паскалиной.

Которая выполняла сложение и вычитание.

В 1970 – 1980 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину, которая выполняла все четыре арифметических действия.

В 1978 году русский учёный П. Чебышев сконструировал счётную машину, выполнявшую сложение и вычитание многозначных чисел.

В 1984 году петербургский инженер Однер сконструировал арифмометр, который выполнял все четыре арифметических действия.

В 30 – е столетия в нашей стране был разработан более совершенный арифмометр «Феликс».

Важным событием 20 столетия было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины – прообраза современного компьютера. В 1812 г. Он начал работать над так называемой «разностной» машиной. К 1822 г. Он построил небольшую действующую модель и

рассчитал на ней таблицу квадратов. В 1833 году приступил к разработке аналитической машины. Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Машину предполагалось приводить в действие силой пара.

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован.

Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором, в котором информация, нанесённая на перфокарты, расшифровывалась с помощью электрического тока. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.

Поколение первое.
Компьютеры на электронных лампах.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Примерами машин I-го поколения могут служить MARK 1, ENIAC EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Поколение второе.
Транзисторные компьютеры.

1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а, магнитную ленту впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).

Поколение третье.
Интегральные схемы.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм 2 .

Первые и нтегральные с хемы (ИС ) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое.
Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние – интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см 2 ). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel® . Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

Сравнение разных поколений компьютеров.

Во время развития компьютеров четко обозначилась тенденция к уменьшению размеров и увеличению производительности. Чем более совершенствовалась элементная база компьютеров, тем меньше и быстрее они становились. Это можно показать на примере следуюшего сравнения и таблицы:

  • ENIAC был размером с целый дом и весил 30 т.
  • На его создание потратили 0,5 млн. долларов.
  • Он потреблял 200 кВт энергии.
  • Лампа выходила из строя каждые 7-8 минут.
  • Он мог сложить два числа за 3 мск.

Очень большие
(ENIAC, UNIVAC, EDSAC)

Значительно меньшие

Миникомпьютеры

Микрокомпьютеры

Быстротдействие

1 (условно)

1 000

100 000

Носитель информации

Перфорированная лента

Магнитный диск, м. лента

Диск

Гибкий диск

ЗАКЛЮЧЕНИЕ

Какими должны быть компьютеры пятого поколения?

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идёт также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний.

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок, так называемый интеллектуальный интерфейс. Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

В настоящее время очень многие области деятельности человека связаны с применением компьютеров. Почему же эти электронные машины так плотно внедряются в нашу жизнь. Все довольно тривиально. Они выполняют рутинную расчетную и оформительскую работу, освобождая наш мозг для более необходимых и ответственных задач. В результате утомляемость резко снижается, и мы начинаем работать гораздо производительнее, нежели без применения компьютера.

Возможности современных компьютеров поражают самое богатое воображение. Они способны параллельно выполнять несколько задач, сложность которых довольно велика. Поэтому некоторые производители задумываются над созданием искусственного интеллекта. Да и сейчас работа компьютера напоминает работу интеллектуального электронного помощника человека.

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.