Центрально симметричные фигуры в жизни. Симметрия в природе. Симметрия в неживой природе

«Математическая симметрия» - Типы симметрии. Симметрия в математике. ИМЕЕТ МНОГО ОБЩЕГО С ОСЕВОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ. В стихах рифма представляет собой поступательную симметрию. Симметрия в химии и физике. Физическая симметрия. В х и м и и. Двусторонняя симметрия. Роль симметрии в мире. Спиральная симметрия. Симметрия в химии.

«Орнамент» - Виды орнамента. Геометрический. а) Внутри полосы. 1 2 3. Создание орнамента с помощью осевой симметрии и параллельного переноса. 2011. Преобразования, используемые для создания орнамента: Плоскостной. в) С двух сторон полосы. Поворот.

«Движение в геометрии» - Движение в геометрии. К каких науках применяется движение? Понятие движения Осевая симметрия Центральная симметрия. В какую фигуру при движении переходит отрезок, угол и др.? Назовите примеры движения. Что называется движением? Как движение используется в различных сферах деятельности человека? Математика красива и гармонична!

«Симметрия в природе» - Мы занимаемся в школьном научном обществе потому, что любим познавать что-то новое и неизвестное. В 19 веке, в Европе, появились единичные работы, посвящённые симметрии растений. Симметрия в природе и в жизни. Одним из основных свойств геометрических фигур является симметрия. Работу выполнили: Жаворонкова Таня Николаева Лера Руководитель: Артёменко Светлана Юрьевна.

«Симметрия вокруг нас» - Вращения (поворотная). Центральная относительно точки. Вращения. Симметрия на плоскости. Осевая симметрия относительно прямой. Вокруг нас. Симметрия в пространстве. Горизонтальная. Симметрия властвует. Зеркальная. Два вида симметрии. Все виды осевой симметрии. Греческое слово симметрия означает «пропорциональность», «гармония».

«Точка симметрии» - Примеры вышеупомянутых видов симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник. С симметрией мы встречаемся в природе, быту, архитектуре и технике. Симметрия в архитектуре. Симметрия в природе. Симметрия плоских фигур. Прямоугольник и ромб, не являющиеся квадратами, имеют две оси симметрии.

Всего в теме 32 презентации

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Проектная работа на тему: Симметрия в жизни человека Выполняла работу: Ученица 11 «Б» МОУ СОШ №4 Гайдукова Жанна

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Определение симметрии Симметрия- соразмерность, одинаковость в расположении частей чего–нибудь по противоположным сторонам от точки, прямой или плоскости. (Толковый словарь Ожегова) Итак, геометрический объект считается симметричными, если с ним можно сделать что-то такое, после чего он останется неизменным

4 слайд

Описание слайда:

Элементы симметрии При изучении строения в сравнительной морфологии используют три главных элемента симметрии: центральная симметрия, ось симметрии и плоскость симметрии. Эти три элемента симметрии необходимы для определения типа симметрии О Центральная симметрия Плоскостная симметрия Ось симметрии О С В А А1 В1 С1

5 слайд

Описание слайда:

Центральная симметрия Это точка,вокруг которой вращается какое-либо тело. Во время вращения контуры тела непрерывно совпадают при повороте на любой угол в любом направлении. Идеальной фигурой с центром симметрии может служить шар. Из живых объектов примером может условно служить шаровидное яйцо с ядром, расположенное в центре. О О

6 слайд

Описание слайда:

Осевая симметрия Это ось вращение,в этом случае отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. А А1 В В1 С С1

7 слайд

Описание слайда:

Симметрия относительной плоскости Это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами а

8 слайд

Описание слайда:

Симметричное вращение Тело(или фигура)обладает симметрией вращения,если при повороте на угол 360 градусов/n где n целое число, около некоторой прямой АВ (ось симметрии) оно полностью совмещается со своим исходным положением. Радиальная симметрии- форма симметрии, сохраняющаяся при вращении объекта вокруг определенной точки или прямой. Часто эта точка совпадает с центром тяжести объекта, то есть той точкой, в которой пересекается бесконечное количество осей симметрии. Подобными объектами могут быть шар, круг, цилиндр или конус.

9 слайд

Описание слайда:

Симметрия подобия Симметрия подобия представляет собой своеобразные аналогии предыдущих симметрий с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии матрешки.

10 слайд

Описание слайда:

Существует много других видов симметрии, имеющих абстрактный характер. Например: Перестановочная симметрия, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; Калибровочная симметрия связаны с изменением масштаба. В неживой природе симметрия прежде всего возникает в таком явлении природы, как кристаллы, из которых состоят практически все твердые тела. Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов- это известная всем снежинка.

11 слайд

Описание слайда:

С симметрией мы встречаемся везде: в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы также подчитываются принципам симметрии

12 слайд

Описание слайда:

Симметрия растений Многие цветы обладают интересным свойством: их можно повернуть так, что каждый лепесток займет положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Билатеральной симметрией обладает также органы растений, например, стебли многих кактусов. В ботанике часто встречаются радиально симметрично построенные цветы. Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листьев как бы раскидывается во все стороны и не заслоняет друг друга от света, крайне необходимого для жизни растений.

13 слайд

Описание слайда:

14 слайд

Описание слайда:

Симметрия животных Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Основными типами симметрии является радиальная(лучевая)-ей обладает иглокожие, кишечнополостные, медузы и др.; или билатериальная(двусторонняя)- можно сказать, что каждое животное(Будь то насекомое, рыба или птица) состоит из двух половин- правой и левой. Сферическая симметрия имеет место у радиолярий и солнечников. Любая плоскость, проведенная через центр, делит животное на одинаковые половинки

15 слайд

Описание слайда:

Симметрия в архитектуре Симметрия сооружений связывается с организацией его функций. Проекция плоскости симметрии -ось здания- определяет обычно размещение главного входа и начало основных потоков движения. Каждая деталь в симметричной системе существует как двойник своей обязательной паре, расположенной по другую сторону оси, и благодаря этому она может рассматриваться лишь как часть целого. Наиболее распространена в архитектуре зеркальная симметрия. Ей подчинены постройки Древнего Египта и храмы античной Греции, амфитеатры, термы, базилики и триумфальные арки римлян, дворцы и церкви Ренессанса, равно как и многочисленные сооружения современной архитектуры.

16 слайд

Описание слайда:

17 слайд

Темой данной работы является понятие симметрии. Есть мнение, что симметрия играет ведущую, хотя и не всегда осознанную роль в современной науке, искусстве, технике и окружающей нас жизни.

Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир?

Существует, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Цель : Изучить проявления симметрии в различных областях жизни человека и общества.

Задачи:

1. Определить основные признаки понятия симметрии.

2. Определить присутствие симметрии в живой и не живой природе, в лингвистике, в искусстве.

3. Изучить достоинства симметричных предметов в образном восприятии человека.

Актуальность обусловлена тем, что симметрия окружает человека, находя свое проявление как в живой, так и не в живой природе, а также большинстве творений человека: в архитектуре, в искусстве и т.д. Объяснение законов симметрии важно для понимая красоты и гармонии. Результаты проекта будут интересны для учащихся средней школы.

В данной работе я исследую геометрическую симметрию и покажу, что геометрическая симметрия присутствует во всем, что нас окружает, с чем мы сталкиваемся постоянно в обыденной жизни.

2.Значение симметрии в нашей жизни.

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.

Формы восприятия и выражения во многих областях науки и искусства, в конечном счёте, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки и видам искусства.

Симметрия (от греческого symmetria - "соразмерность") - понятие, означающее сохраняемость, повторяемость, "инвариантность" каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований.

Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Симметрия противостоит хаосу, беспорядку. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство.

Весь мир можно рассмотреть как проявление единства симметрии и асимметрии. Асимметричное в целом сооружение может являть собой гармоничную композицию из симметричных элементов.

Симметрия многообразна, вездесуща. Она создает красоту и гармонию.

На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, с другой стороны – к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии.

«Симметрия, - пишет известный ученый Дж. Ньюмен,- устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности…»

Рассмотрим примеры симметрии в различных областях нашей жизни.

  1. Симметрия в природе.

3.1.Симметрия в неживой природе.

Снежинка – это кристалл замёршей воды.

Мир кристаллов - это особый мир симметрии, с которым связаны великие открытия и в области математики, и в области кристаллографии. В кристаллах возможны оси симметрии 1,2,3,4 и 6 порядков.

Снежинки являются самым ярким примером красоты форм осевой симметрии. Любая снежинка имеет поворотную ось симметрии и кроме того, каждая снежинка зеркально симметрична. (рис 1)

Рис.1 Симметрия снежинок: осевая симметрия.

Отражение в воде – единственный пример горизонтальной симметрии в природе . (рис.2)

Рис.2 Симметрия озера: горизонтальная симметрия.

3.2 . Симметрия у растений.

Характерная для растений симметрия конуса хорошо видна на примере любого дерева (рис.3).

Рис. 3 Симметрия конуса: ось и плоскость симметрии .

Специфика строения растений определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных (рис.4).

Рис.4 Цветок – радиальная симметрия (двойная, тройная, пятерная)

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок той же логарифмической спирали, что и вся головка (рис.5).

Рис.5 Броколли – фрактальная симметрия

Подсолнухи (рис.6) могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками

Рис.6 Подсолнух – радиальная симметрия

Вывод: У растений мы наблюдаем следующие виды симметрии:

  • Дерево – имеет ось и плоскость симметрии
  • Цветок – радиальная симметрия (совпадает сам с собой при вращении, имеет много плоскостей симметрии, проходящих через центр цветка)
  • Листья у цветов – билатеральная симметрия (имеют только одну плоскость симметрии)
  • Брокколи – фрактальная симметрия

3.3.Симметрия у животных

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин (рис.7).

Рис. 7 Павлин - зеркальная симметрия

Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью (рис.8).

Рис.8 Бабочка – зеркальная симметрия

Очень интересен вид симметрии раковины Наутилуса (рис.9).

Рис. 9 Раковина Наутилуса -спираль Фибоначчи

Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Вывод: Мы видим, что билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира .

3.4.Симметрия у человека.

Человеческое тело также обладает билатеральной симметрией (внешний облик и строение скелета) (рис.10).

Рис.10 Билатеральная симметрия

Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Наша собственная зеркальная симметрия очень удобна, она позволяет человеку двигаться прямолинейно и с одинаковой легкостью поворачиваться вправо и влево.

Вывод: Человеку, как и представителям животного мира присуща зеркальная симметрия.

4.Симметрия в русском языке.

Можно наблюдать симметрию и в русском языке.

Например:

Буквы А, М, Т, Ш, П имеют вертикальную ось симметрии

В, З, К, С, Э, В, Е – горизонтальную.

А буквы Ж, Н, О, Ф, Х имеют по две оси симметрии.

Симметрию можно увидеть и в словах: казак, шалаш.

Есть и целые фразы с таким свойством (если не учитывать пробелы между словами):

“Искать такси”, “Аргентина манит негра”, “Ценит негра аргентинец”,

“Леша на палке клапана шел”. А роза упала на лапу Азора.

Такие слова называются палиндромами.

Ими увлекались многие поэты.

ИСКАТЬ ТАКСИ

АРГЕНТИНА МАНИТ НЕГРА

ЛЕША НА ПАЛКЕ КЛАПАНА НАШЕЛ

А РОЗА УПАЛА НА ЛАПУ АЗОРА

Вывод: Таким образом, мы видим пример осевой симметрии в буквах, симметрии в целых фразах.

5.Симметрия в искусстве.

5.1.Симметрия в архитектуре.

Сколько живёт человек, столько он и строит.

В древние времена жилые дома обычно строили, симметрично располагая их вокруг определенной центральной точки. Независимо от того, была их форма округлой,

квадратной или прямоугольной, в них было довольно просто определить месторасположение такой точки. Очень часто домашний очаг помещался в такой точке. Он был фокальной точкой, вокруг которой проходила жизнь всей семьи.

Велика роль симметрии и пропорций в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придаёт гармоничность, законченность. Только неотступно следуя законам геометрии, архитекторы древности могли создавать свои шедевр ы.

Прекрасные образцы симметрии демонстрируют произведения архитектуры. Общие планы построек, фасады, орнаменты, карнизы, колонны обнаруживают соразмерность, гармонию.

Наиболее известные памятники это: Исаакиевский собор, Большой театр, Зимний дворец (Россия); Триумфальная арка, Собор Парижской богоматери (Франция); музей Гугун, храм Неба (Китай); Пантеон, Миланский собор (Италия) (рис.11).

Исаакиевский собор Большой театр

Зимний дворец Собор Парижской богоматери

Музей Гугун Миланский собор

Рис.11

Эти архитектурные сооружения демонстрируют зеркальную симметрию, но если рассматривать отдельные стены этих зданий, то увидим, что все они имеют ось симметрии.

Симметричные объекты и здания более устойчивы. Симметрия широко используется в конструкции зданий и в элементах декора. Это делает архитектурные сооружения красивее, гармоничнее, торжественнее и надежнее.

Вывод: Таким образом, мы выяснили, что зеркальная и осевая симметрия есть и в зданиях, которые нас окружают.

5.2.Симметрия в поэзии и музыке.

В поэзии мы имеем дело с единством симметрии и асимметрии. «Душа музыки – ритм – состоит в правильном периодическом повторении частей музыкального произведения, - писал в 1908 году известный русский физик Г.В. Вульф. – Правильное же повторение одинаковых частей в целом и составляет сущность симметрии. Мы с тем большим правом можем приложить к музыкальному произведению понятие симметрии, что это произведение записывается при помощи нот, т.е. получает пространственный геометрический образ, части которого мы можем обозревать». Он же писал: «Подобно музыкальным произведениям, могут быть симметричны и произведения словесные, в особенности стихотворения».

В стихотворениях подразумевается симметрия чередования рифм, ударных слогов, то есть опять-таки ритмичность. Композитор в своей симфонии может по нескольку раз возвращаться к одной и той же теме, постепенно разрабатывая ее.

Сохранение темы и ее изменение (разработка, развитие) – это и есть единство симметрии и асимметрии. И чем удачнее решает композитор или поэт проблему соотношения между симметрией и асимметрией, тем выше художественная ценность создаваемого произведения искусств

Вывод: Рифма стихов и ритм музыки – один из примеров симметрии.

5.3. Симметрия в живописи.

В искусстве существует математическая теория живописи. Это теория перспективы. Перспектива - это учение о том, как передать на плоском листе бумаги ощущение глубины пространства, то есть передать окружающим мир таким, как мы его видим. Оно основано на соблюдении нескольких законов. Законы перспективы заключаются в том, что чем дальше от нас находится предмет, тем он нам кажется меньше, совсем нечетким, на нем меньше деталей, основание его выше (рис.12).

Рис.12 Перспектива.

Если мы будем соблюдать все правила, то картины будут получаться гармоничными, они будут иметь ощущение устойчивости, равновесия. Если мы нарушим некоторые правила, то изображение сразу же станет оригинальным, своеобразным и интересным.

Таким образом, красота живописи обусловлена, в первую очередь, законами математики.

Для анализа симметрии изображения можно обратиться к хранящейся в Эрмитаже картине гениального итальянского художника и ученого Леонардо да Винчи «Мадонна Литта» (рис.13).

Рис.13 Мадонна Литта

Можно обратить внимание: фигуры мадонны и ребенка вписываются в правильный треугольник, который вследствие своей симметричности особенно ясно воспринимается глазом зрителя. Благодаря этому мать и ребенок сразу же оказываются в центре внимания, как бы выдвигаются на передний план. Голова мадонны совершенно точно, но в то же время естественно помещается между двумя симметричными окнами на заднем плане

картины. В окнах просматриваются спокойные горизонтальные линии пологих холмов и облаков. Все это создает ощущение покоя и умиротворенности, усиливаемое за счет гармоничного сочетания голубого цвета с желтоватыми и красноватыми тонами.

Внутренняя симметрия картины хорошо ощущается.

Получается, что всякий раз, когда мы, восхищаемся тем или иным произведением искусства, говорим о гармонии, красоте, эмоциональности воздействия, мы тем самым касаемся одной и той же неисчерпаемой проблемы – проблемы соотношения между симметрией и асимметрией. Как правило, находясь в музее или в концертном зале, мы не задумываемся над этой проблемой. Ведь нельзя одновременно и ощущать, и анализировать ощущение.

Вывод: Итак, мы видим, что произведения живописи также подчинены законам симметрии.

6.Симметрия в математике.

Идея симметрии часто является отправным пунктом в гипотезах и теориях учёных прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. В своих размышлениях над картиной мироздания человек с давних времен активно использовал идею симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок.

Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.

Широко используя идею симметрии, ученые любили обращаться не только к сферической форме, но также к правильным выпуклым многогранникам. Еще во времена древних греков был установлен поразительный факт – существует всего пять правильных

выпуклых многогранников разной формы. Симметрии геометрических тел большое значение придавали греческие мыслители эпохи Пифагора. Они считали, что для того, чтобы тело было "совершенно симметричным", оно должно иметь равное число граней, встречающихся в углах, и эти грани должны быть правильными многоугольниками, то есть фигурами с равными сторонами и углами. Впервые исследованные пифагорейцами, эти пять правильных многогранников были впоследствии подробно описаны Платоном. Древнегреческий философ Платон придавал особое значение правильным многогранникам, считая их олицетворением четырёх природных стихий: огонь-тетраэдр (вершина всегда обращена вверх), земля-куб (наиболее устойчивое тело), воздух-октаэдр, вода-икосаэдр (наиболее "катучее" тело). Додекаэдр представлялся как образ всей Вселенной. Именно поэтому правильные многогранники называются также телами Платона.

Геометрическая симметрия - это наиболее известный тип симметрии для многих людей. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию).

Простейшими видами пространственной симметрии являются центральная, осевая, зеркально- поворотная и симметрия переноса.

Центральная симметрия.

Две точки А и А1 называются симметричными относительно точки О, если О – середина отрезкаАА 1 . Точка О считается симметричной самой себе.

Осевая симметрия.

Преобразование фигуры F в фигуру F 1 , при котором каждая ее точка переходит в точку, симметричную относительно данной прямой, называется преобразованием симметрии относительно прямой а. Прямая а называется осью симметрии.

Зеркально-поворотная симметрия.

Если внутрь квадрата вписать с поворотом другой квадрат, то это и будет пример зеркально-поворотной симметрии.

Переносная симметрия.

Если при переносе плоской фигуры F вдоль заданной прямой АВ на расстояние а (или кратное этой величине) фигура совмещается сама с собой, то говорят о переносной симметрии. Прямая АВ называется осью переноса, расстояние а элементарным переносом или периодом.

7. Заключение

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого развития. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придает гармоничность, законченность. Симметрия буквально пронизывает весь окружающий нас мир

Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить нам на пользу.

Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Существует множество видов симметрии как в растительном, так и в животном мире, но при всем своем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира.

8.Список литературы, интернет-ресурсов.

  • Л. Тарасов. Этот удивительный симметричный мир. М., 1982 г.
  • Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991
  • Главный редактор Мария Аксенова. Энциклопедия для детей том 2. М., «Аванта+» 2001.
  • http://bse.sci-lib.com/
  • http://vitim-school.edusite.ru
  • http://obraz.volganet.ru
  • http://elhow.ru
  • http://365facts.ru

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1. Симметрия………………………………………………………...............................4

1.1. Что такое симметрия?...................................................................................4

1.2. Виды симметрии…………………………………………………….…..…5

1.3. Симметрия в математике…..……………………………….….………….7

1.4. Симметрия в русском языке..………………………………..……………8

1.5. Симметрия в окружающем мире………………………..…….………….9

2. Симметрия вокруг нас………………………………………………………….….13

3. Роль симметрии………………………………………………………….…….…...15

Заключение………………………………………………………………….…….…..16

Список использованных источников………………………………………………..17

Введение

На уроках математики мы изучали симметрию, но оказалось, что на эту тему отводится мало времени. И мне захотелось узнать по больше о симметрии.

В работе мы рассмотрим понятие «симметрия» шире, не ограничиваясь рамками математики. Окружающий нас мир во многом симметричный — симметрией обладают насекомые и звери, цветы и деревья, предметы быта и архитектурные сооружения.

Цели исследования:

    Изучение понятия «симметрия»;

    Какую роль играет симметричность;

    Симметрия вокруг нас.

Задачи исследования;

    Доказать, почему важна симметрия;

    Рассмотреть виды симметрии, и где встречается;

    Провести эксперимент и выяснить, симметрично ли лицо человека;

Объектом исследования является симметрия, а предметом - симметрия в природе и окружающем мире.

При проведении работы были использованы методы наблюдения, анкетирование, эксперимент и теоретический анализ.

Симметрия

1.1.Что такое симметрия?

Чтобы выяснить, что знают ребята начальной школы, мы провели опрос что такое симметрия и где она встречается. В нем приняло участие 90 человек.

Из анкетирования мы узнали, что учащиеся мало знают где встречается симметрия и что это такое.

У нас получились следующие результаты:

На первый вопрос знают правильный ответ только 9 человек. На второй

вопрос - 16 человек. Больше всего правильных ответов на третий вопрос -

57 человек.

Прочитав энциклопедии и учебники, я узнал, что самые совершенные формы создает природа, и именно она придает этим формам необыкновенно гармоничные цветовые сочетания (бабочка, оса, стрекоза). Люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта. Я обратил внимание на то, как строги симметричные формы античных зданий, гармоничны древнегреческие вазы, соразмерны их орнаменты. С тем или иными проявлениями симметрии мы встречаемся буквально на каждом шагу.

Так что же такое симметрия? Мы посмотрели в нескольких источниках. В толковом словаре С.И. Ожегова:

Симметрия - это соразмеренность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости.

В толковом словаре В.И. Даля:

Симметрия (греч.) - соразмерность, соответствие, сходность;

В Большой Советской энциклопедии:

Симметрия - это свойство геометрической фигуры, характеризующее некоторую правильность формы, неизменность её при действии движений и отражений.

Из найденных определений наиболее понятным для меня явилось определение данное C.И. Ожиговым. Определения разные, но во всех встречается слово соразмерность.

    1. Виды симметрии

Математика - царица всех наук, символ мудрости. Красота математики среди наук недосягаема, а красота является одним из связующих звеньев науки и искусства. Это не только стройная система законов, но и уникальное средство познания красоты. В математике рассматриваются различные виды симметрии. Каждая из них имеет своё название.

В природе наиболее распространены следующие виды симметрии - «зеркальная», осевая, центральная симметрии.

«Зеркальной» симметрией обладает бабочка, листок или жук и часто такой вид симметрии называется «симметрией листка». К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево. А зеркало не просто копирует объект, но и меняет местами передние и задние по отношению к зеркалу части объекта.

Я посмотрелся в зеркало и задумался о том, что моя левая рука в зеркале является правой и наоборот.

Я узнал, что в школьном курсе геометрии рассматриваются три вида симметрии: симметрия относительно точки (центральная симметрия); симметрия относительно прямой (осевая или зеркальная симметрия); симметрия относительно плоскости. Центральная симметрия .Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе.

Осевая симметрия. Преобразование фигуры F в фигуру F1, при котором каждая ее точка переходит в точку, симметричную относительно данной прямой, называется преобразованием симметрии относительно прямой а. Прямая а называется осью симметрии.

Для того, чтобы увидеть это складываем пополам лист бумаги пополам и прокалываем его иголкой. Разгибаем лист. Находим на нем две точки А и В. Проводим отрезок АВ и обозначаем буквой О его пересечение с прямой L. Отрезки АО и ВО равны.

Зеркальная симметрия . Зеркальная симметрия - отображение пространства на себя, при котором любая точка переходит в симметричную ей точку, относительно плоскости.

В пространстве аналогом оси симметрии является плоскость симметрии. Отображение пространства на себя относительно плоскости называют зеркальной симметрией. Название это оправдано тем, что обе части фигуры, находящиеся по разные стороны от плоскости симметрии, похожи на некоторый объект и его отражение в зеркале.

У нас в поселке есть пруд, куда любят ходить отдыхать жители нашего села. На его берегу очень красиво. Тихо. Ничего не колышется. В воде отражаются берёзы, кусты, камыши. Вот она какая- зеркальная симметрия!

Поворотная симметрия . Поворотная симметрия - это такая симметрия при которой объект совмещается сам с собой при повороте вокруг некоторой оси на определенные углы.

Такая симметрия встречается в цветах. Я попробовал повернуть ромашку, все получилось. Рассматриваю расположение листьев на ветке дерева, вижу, что один лист не только находится на расстоянии от другого, но и повёрнут вокруг оси ствола. Зачем? В энциклопедии написано, что листья располагаются на стволе по винтовой линии (принцип винтовой симметрии), чтобы не заслонять друг от друга солнечный свет.

Переносная симметрия. Если при переносе плоской фигуры F вдоль заданной прямой АВ на расстояние а (или кратное этой величине) фигура совмещается сама с собой, то говорят о переносной симметрии. Прямая АВ называется осью переноса, расстояние а элементарным переносом.

    1. Симметрия в математике

Симметрия встречается и на наших обычных уроках математики, например:

    В геометрических фигурах: квадрате, прямоугольнике, треугольнике, круге.

    Зеркальная симметрия в числах.

Числа, состоящие из цифр 8 и 0 симметричны.

    Так же симметричны знаки арифметических действий, скобки двойные и фигурные:

+ = : () { } Х

    При изучении темы «Единицы массы», мы знакомимся с весами. Весы в равновесии - симметричны!

    При изучении таблицы умножения и деления, мы увидели, что числа и ответы в ней расположены симметрично относительно оси симметрии-диагонали.

    1. Симметрия в русском языке

На уроке русского языка мы заметили, что тоже встречается симметрия, например,:

    В буквах:

    В словах:

Зеркальная анаграмма — разновидность анаграммы, фраза (или одно слово) получающаяся прочтением другой фразы в обратном порядке, например, «вор» — «ров».

Примеры зеркальных анаграмм

азу — уза;

бук — куб;

марш — шрам;

диско — оксид;

Милан — налим;

Зеркальные анаграммы похожи на палиндромы, но у палиндромов смысл при обратном прочтении не меняется (Приложение 1).

Шалаш, казак, радар, кок, Анна, поп, Алла.

А роза упала на лапу Азора.

Самый короткий палиндром в русском языке состоит всего из одной буквы — О! .

    При подчеркивании членов предложения:

Сказуемое дополнение определение обстоятельство

    В нашем учебнике по русскому языку используются такие условные обозначения, они симметричны:

    1. Симметрия в окружающем мире

На уроках «Окружающий мир» мы изучаем живую и неживую природу.

Бабочка - яркий пример зеркальной симметрии. Можно поменять местами правую и левую половину, при этом объект не изменится.

Также примеры симметрии можно найти при рассмотрении растений.

Центральная симметрия Осевая симметрия

    Мы заметили симметрию, рассматривая флаги разных государств.

Канада Азербайджан Великобритания

Вьетнам Багамы

Человек так же является объектом живой природы. И мне стало интересно, а симметрично ли лицо человека? Для того, чтобы найти ответ на этот вопрос, мы проведем эксперимент.

Проводим вертикальную ось симметрии:

Копируем левую половинку. Так же поступили и с правой.

Совместили две левые половинки:

Совместили две правые половинки:

Проведя эксперимент, мы пришли к выводу, что лицо человека не симметрично, как кажется на первый взгляд.

    Симметрия вокруг нас

С симметрией мы встречаемся везде - в природе, технике, искусстве, науке. Издавна человек использовал симметрию в архитектуре. Древним храмам, башням, средневековым замкам, современным зданиям она придает гармоничность и законченность. Симметрия буквально пронизывает весь окружающий нас мир.

    Каждая снежинка - это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией.

    Симметрия в технике наблюдается очень часто. Я думаю, люди это делают, потому что такой техникой удобнее пользоваться.

    Симметрия используется и в быту, например, орнаменты и бордюры, посуда, предметы интерьера, одежда.

    Симметрия встречается даже в поэзии и музыке.

«Душа музыки - ритм - состоит в правильном периодическом повторении частей музыкального произведения», - писал в 1908 году известный русский физик Г.В. Вульф. Правильное же повторение одинаковых частей в целом и составляет сущность симметрии.

Композитор в своей симфонии может по нескольку раз возвращаться к одной и той же теме, постепенно раскрывая ее.

В стихотворениях подразумевается симметрия чередования рифм, ударных слогов.

Все ярко, все бело кругом.

На стеклах легкие узоры,

Сорок веселых на дворе ,

Деревья в зимнем серебре ,

И мягко устланные горы

Зимы блистательным ковром.

Пушкин А.С. «Евгений Онегин»

Таким образом, я понял, что симметрия в моей жизни встречается повсюду, надо только быть внимательным и наблюдательным.

    Роль симметрии

Мы познакомились с понятием симметрии и ее видами.

Теперь я задумался, а какую роль играет симметричность?

Я обратился с просьбой к ребятам, помочь выполнить задание.

Задание: Необходимо дорисовать симметричную половинку и несимметричную. Сделать вывод (Приложение 2).

Вывод : На этих рисунках симметричные объекты выглядят гармоничнее, чем асимметричные.

Симметрия - это порядок, предсказуемость, устойчивость. Человек любит порядок, предсказуемость, устойчивость, поэтому симметричные объекты кажутся ему красивее.

При этом, незначительные отклонения от симметрии придают объекту индивидуальность, и это тоже хорошо. Например, если бы все ёлки были полностью симметричными, то еловый лес вряд ли бы нам понравился. А небольшие отклонения от симметрии позволили превратить вазу в кувшин...

Заключение

Симметрия веками оставалась тем свойством, которое занимало умы философов, астрономов, математиков, художников, архитекторов, и мы с большим удовольствием начали заниматься изучением симметрии.

В ходе данной работы мы познакомились с несколькими видами симметрии: «зеркальная», осевая и центральная. Нашли, где она прячется и поняли, что симметрия встречается везде: в живой и неживой природе, в технике, науке, искусстве, архитектуре, в быту. С симметрией мы встречаемся и в школе на всех уроках.

Мы считаем всё симметричное красивым, потому что симметрия — это порядок и устойчивость, а человек всегда стремится к порядку и гармонии. Но в окружающем нас мире нет абсолютной симметрии, и это мы выяснили в результате эксперимента с фотографией.

Исследователи доказали, что небольшие отклонения от симметрии придают индивидуальность объекту и делают его более интересным. Небольшие отклонения от симметрии допускаются и в архитектуре, одежде, прическах, украшения и т.д. Значительные же отклонения от симметрии считаются некрасивыми и часто не принимаются человеком.

Симметрия играет огромную роль в архитектуре, музыке, живописи, технике и в природе. Об этом сказано в одном стихотворении:

О, симметрия! Гимн тебе пою!Тебя повсюду в мире узнаю.Ты в Эйфелевой башне, в малой мошке,Ты в елочке, что у лесной дорожки.С тобою в дружбе и тюльпан, и роза,И снежный рой - творение мороза!

В результате проведённого исследования были достигнуты все цели и задачи. Работа была интересной и полезной. Своими знаниями я поделюсь с одноклассниками и другими ребятами начальной школы.

Список используемых источнтков

1.Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар.ком. Просвещение, 1991

2. Гаспаров М.Л. Очерк истории русского стиха: метрика, ритмика, рифма, строфика. М., 1984

4. Смолина Н.И. Традиции симметрии в архитектуре. - М., 1990.

5. Тарасов Л. Этот удивительно симметричный мир. - М.: Просвещение, 1982.

6. Шубников А.В., Копцик В.А. Симметрия в науке и искусстве. М., 1972.

Приложение 1

Палиндромы

Аргентина манит негра.

Лидер бредил.

Город дорог.

Спел лепс.

Лимузин изумил.

А роза упала на лапу Азора.

Я с уколов - еле волокуся.

Лёша на полке клопа нашёл.

Лилипут сома на мосту пилил.

«Ура!», - вопите, дети, повару!

Я нем: лис укусил меня!

А кобыле цена - дана, да не целы бока!

А за работу - дадут? - Оба раза!

А муза - раба разума.

Я радую тетю - дядю ударя, Я радую дядю - тетю ударя.

Но невидим архангел, мороз узором лег на храм, и дивен он.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.