И за чего происходит гроза. Откуда берутся гром и молния

Люди всегда уделяли большое внимание грозам. Именно их связывали с большинством главенствующих мифологических образов, вокруг их появления строили догадки. Наука разобралась в этом сравнительно недавно - в XVIII веке. Многих мучает вопрос до сих пор: почему зимой не бывает грозы? Далее в статье мы с этим разберемся.

Как происходит гроза?

Здесь действует обычная физика. Гроза - природное явление в слоях атмосферы. От обычного ливня она отличается тем, что во время любой грозы возникают сильнейшие электрические разряды, объединяющие кучевые дождевые облака между собой или с землей. Эти разряды сопровождаются также громкими звуками раскатов грома. Часто усиливается ветер, порой достигая шквально-ураганного порога, идет град. Незадолго до начала воздух, как правило, становится душным и влажным, достигает высокой температуры.

Виды грозы

Существуют два основных типа гроз:

    внутримассовые;

    фронтальные.

Внутримассовые грозы возникают в результате обильного прогревания воздуха и, соответственно, столкновения горячего воздуха у поверхности земли с холодным воздухом наверху. Из-за этой особенности они довольно строго привязаны ко времени и, как правило, начинаются во второй половине дня. Над морем они могут пройти и ночью, во время движения над отдающей тепло поверхностью воды.

Фронтальные грозы возникают при столкновении двух фронтов воздуха - теплого и холодного. Определенной зависимости от времени суток они не имеют.

Частота гроз зависит от средних температур в регионе, где они происходят. Чем ниже температура - тем реже они будут случаться. На полюсах их можно встретить всего раз в несколько лет, и они крайне быстро заканчиваются. Индонезия же, например, славится частыми затяжными грозами, которые могут начинаться чаще двухсот раз в год. Они, однако, обходят пустыни и другие территории, где редко идут дожди.

Почему происходят грозы?

Ключевой причиной происхождения грозы становится как раз неравномерное прогревание воздуха. Чем выше разность температур у земли и на высоте, тем сильнее и чаще будут происходить грозы. Вопрос остается открытым: почему зимой не бывает грозы?

Механизм того, как происходит это явление, следующий: теплый воздух от земли согласно закону теплообмена стремится вверх, в то время как холодный воздух из верхней части облака вместе с содержащимися в нем льдинками - опускается вниз. В результате этого круговорота в частях облака, поддерживающих разную температуру, возникает два разнополюсных электрических заряда: положительно заряженные частицы скапливаются внизу, а отрицательно - наверху.

Каждый раз при их столкновении между двумя частями облака проскакивает огромная искра, которая, собственно, и является молнией. Звук взрыва, с которым эта искра разрывает раскаленный воздух, и есть всем известный гром. Скорость света выше скорости звука, поэтому до нас молния и гром доходят не одновременно.

Типы молний

Все не раз видели обычную молнию-искру и уж точно слышали о Тем не менее этим все разнообразие молний, вызываемых грозами, не исчерпывается.

Всего существует четыре основных типа:

  1. Молнии-искры, бьющие среди облаков и не касающиеся земли.
  2. Ленточные, соединяющие облака и землю, - те самые опасные молнии, которых следует опасаться больше всего.
  3. Горизонтальные молнии, рассекающие небо ниже уровня облаков. Они считаются особенно опасными для жителей верхних этажей, поскольку могут спускаться достаточно низко, но с землей не соприкасаются.
  4. Шаровые молнии.

Ответ на этот вопрос довольно прост. Почему зимой не бывает грозы? Из-за низких температур у самой земной поверхности. Не возникает резкого контраста между теплым воздухом, разогретым внизу, и холодным воздухом из верхних слоев атмосферы, таким образом, электрический заряд, содержащийся в облаках, всегда отрицательный. Вот почему зимой не бывает грозы.

Разумеется, из этого следует, что в жарких странах, где температура зимой остается положительной, они продолжают происходить вне зависимости от времени года. Соответственно, в холодных точках мира, например в Арктике или в Антарктиде, гроза - величайшая редкость, сравнимая с дождем в пустыне.

Весенняя гроза, как правило, начинается, в конце марта или в апреле, когда почти полностью сходит снег. Ее появление означает, что земля прогрелась в достаточной степени, чтобы отдавать тепло и быть готовой к посевам. Поэтому с весенними грозами связано множество народных примет.

Ранняя весенняя гроза может быть вредна для земли: как правило, она происходит во время аномально теплых дней, когда погода еще не устоялась, и приносит с собой ненужную еще влажность. После этого землю часто сковывает льдом, она промерзает и обеспечивает плохой урожай.

Предосторожности во время грозы

Во избежание удара молнии не следует останавливаться возле высоких объектов, особенно одиночных - деревьев, труб и других. По возможности вообще лучше не находиться на возвышенности.

Вода - отличный проводник электричества, поэтому первое правило для тех, кто застигнут грозой, - не находиться в воде. Ведь если молния ударит в водоем даже на значительном удалении, разряд легко достигнет стоящего в нем человека. То же касается и сырой земли, поэтому контакт с ними должен быть минимален, а одежда и тело - по возможности сухими.

Не следует контактировать с бытовыми электроприборами или мобильными телефонами.

Если гроза застала в автомобиле - лучше его не покидать, резиновые шины дают хорошую изоляцию.

Думаете, грозы бывают везде? А вот и нет. Есть на нашей планете места, где грозы случаются с завидной регулярностью и отличаются особой силой, а есть и такие, где гроз не бывает вовсе. Но обо всём по порядку.

Как известно, большая часть нашей планеты покрыта водой . Так вот: над океаном грозы случаются примерно в 10 раз реже, чем над сушей и главным образом в зимние месяцы . Если же говорить о распределении гроз по широтам, то картина получается следующая:

  • наибольшее число гроз наблюдается над территорией Центральной Африкив экваториальном поясе,
  • в тропических и субтропических широтах (от 30° северной до 30° южной широты) грозы также довольно частое явление,
  • на полюсах гроз практически не случается, разве что в Центральной Арктике фиксируются редкие грозы в летние месяцы.

Кроме этого, гроза - явление сезонное. Случаются они, главным образом, поздней весной (конец апреля-май), летом, а также ранней осенью (сентябрь-начало октября). В среднем, в умеренных широтах в год случается примерно 10 - 15 гроз.

Но картина не будет полной, если не отметить некоторые регионы на суше, где на формирование гроз оказывают влияние особенности рельефа . Например, в горных системах Гималаев и Кордильер находятся зоны, в которых грозовая активность чрезвычайно высока.

Формирование грозовых облаков

Гроза - это всегда облака. Даже не облака - тяжёлые и мрачные грозовые тучи, заволакивающие горизонт (быстро или не очень). Но вот как они образуются и почему становятся грозовыми? Попробуем разобраться и в этом непростом вопросе.

Смотрим в словарь и обнаруживаем вот какое определение: "Облака - взвешенные в атмосфере продукты конденсации водяного пара, видимые на небе с поверхности земли". В общем, всё понятно. Но почему белые и пушистые на вид облака превращаются в грозовые тучи?

Существование всех грозовых облаков можно разделить на три этапа:

  • стадия кучевого облака,
  • стадия зрелого грозового облака,
  • стадия распада.

Чтобы начали образовываться кучевые облака, способные стать грозовыми, требуются особые условия, в частности, конвекция. Конвекцией называют механизм переноса теплоты в жидкостях, газах или сыпучих средах потоками вещества. Существует естественная конвекция , которая возникает самопроизвольно при неравномерном нагревании вещества в поле тяготения.

При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова. Или не повторяется - выпадают осадки.


Кроме конвекции необходим большой запас влаги, чтобы гроза была с дождём, а также структура, в которой часть облачных частиц находится в жидком состоянии, а часть - в ледяном.

Условий много и все они должны быть соблюдены. Нужная для образования грозы конвекция возникает в следующих случаях:

  1. Приземный слой воздуха нагревается неравномерно, потому что поверхность под ним разная. Например, над водой и сушей воздух будет прогрет неодинаково из-за различной температуры воды и почвы. Над крупными городами воздух прогревается лучше и конвекция интенсивнее, чем в окрестностях города или совсем за городом.
  2. Подъём или вытеснение тёплого воздуха холодным на атмосферных фронтах. Это явление называется фронтальной конвекцией и развивается она одновременно со слоисто-дождевыми облаками и обложными осадками, что маскирует образование кучево-дождевых облаков.
  3. Подъём воздуха в районах горных массивов. Облака, как известно, образуются активнее всего в районах возвышенностей, за счёт вынужденной конвекции. А в высокогорных районах создаются совершенно особые условия для развития конвекции и её повторяемость и интенсивность почти всегда увеличивается.

Разобравшись с тем, как образуются грозовые облака, попробуем заглянуть к ним вовнутрь. А точнее, понять, откуда берутся гром и молния.

Грозовое электричество

Установлению электрической природы молнии человечество обязано Бенджамину Франклину. Вероятно, многие вспомнят, что именно он изображён на купюре достоинством в 100 долларов США.

Помимо политической деятельности, Франклин успел поработать журналистом, издателем, а в ходе научных изысканий , связанных с атмосферным электричеством не только установил, что молния - это электрический разряд, но и разработать молниеотвод.

Опыты с молнией Франклин провёл в далёком 1750 году. Запускал воздушного змея в грозовое облако. Этот опыт описан в работе Джозефа Пристли "История и теперешнее состояние электричества", опубликованной в 1767 году.

Предлагалось немало идей для объяснения того, как формируется электрический заряд в облаке. На сегодняшний день основная гипотеза такова: в облаке присутствуют как более крупные и тяжёлые частицы, так и более лёгкие. Каждая из них несёт определённый заряд. Когда величина накопившегося в облаке объёмного электрического заряда становится достаточно большой, между областями, заряженными противоположным знаком, происходит молниевый разряд.

Меры предосторожности при грозе

Несмотря на то, что молниевый разряд между облаком и землёй случается не так уж и часто, оказаться объектом его попадания смертельно опасно. Чтобы такого не случилось, стоит знать несколько довольно простых правил, которые помогут снизить до минимума риск попасть под удар молнии во время грозы.

В поле или на любом открытом пространстве. Главное - не стоять в полный рост. Лучше всего найти в земле углубление, подойдёт канава, овраг или небольшая ложбинка. На землю ложиться ни в коем случае нельзя.

Если вариантов укрыться или забраться в какую-нибудь ложбину нет - просто присесть на корточки и обхватить колени руками. Ни при каких условиях не стоит укрываться под одиноко стоящими деревьями. Вероятность того, что в них ударит молния очень высока.

На воде. Если начинается гроза, а вы купаетесь или ловите рыбу - немедленно гребите к берегу. На воде оставаться категорически запрещено. Искать укрытие близко от воды также не рекомендуется.

  • Энциклопедический словарь Брокгауза и Ефрона
  • Большая Советская Энциклопедия
  • Джозефа Пристли. История и теперешнее состояние электричества
  • Уилсон М. Американские учёные и изобретатели
  • Ермаков В.И., Стожков Ю.И. Физика грозовых облаков
  • Кун Н.А. Легенды и мифы Древней Греции

ГРОЗЫ, УСЛОВИЯ ОБРАЗОВАНИЯ И СТАД ИИ РАЗВИТИЯ

Гроза – это сложное ат мосферное явление, характеризующееся интенсивным облакооб разованием и многократными электрическими разрядами в виде молний.

Грозы возникают в кучево-дождевых облаках, которые, в этом случае, называются грозовы ми. Площадь хорош о развитых кучево-дождевых облаков обычно не превышает

50…100 км2. В грозовых облаках сконцент рирована колоссальная энергия, проявления которой всегда поражают человеческое воображение. Расчет ы показывают, что в грозовом

облаке небольших размеров (площадью около 30 км2) при конденсации водяного пара выделяется около 1,8 · 1013 калорий тепла. Примерно такое же количество тепла (2 · 1013)

выделяется при взрыве атомной бомбы среднего калибра или взрыве 20000 тонн тротила. Количество тепла, выделяемое при конденсации водяного пара в хорошо развитом об лаке, занимающем площадь около 100 км2 , равно количест ву тепла, образующемуся при взрыве водородной бомбы, что примерно в 1000 раз больше, чем при взры ве атомной бомбы, и эквивалентно взрыву 20 млн. тонн тротила. Вся эта громадная тепловая энергия, выделяющаяся при конденсационных процессах, расходует ся на развитие в об лаке восходящих т оков,

которые поддерживают во взвешенном состоянии сотни тысяч тонн воды. Восходящие токи иногда способствуют развитию грозовых облаков до больших вы сот. Вершины облаков могут пробиват ь тропопаузу и проникат ь в нижнюю стратосферу. В умеренных широт ах грозовы е облака могут развиваться д о 12…14 км, в Закавказье, Сред ней Азии и Дальнем Вост оке - до 15…16 км, в Индии - до 18 км, в э кват ориальной зоне – до 20…21 км.

Грозовое облако непрерывно выраб атывает электричество, которого достаточно для

того, чтобы обеспечить все потребности город а, имеющ его население в 10 млн. человек, в течение всего времени, пока длится гроза.

В грозовых облаках наибольшую угрозу для авиации представляют такие опасные явления, как сильная т урбулентность, мощные вертикальны е токи возд уха, интенсивное обледенение, электрические разряды, град и ливневые осадки. Следует отметить, что все эт и опасные явления мог ут наблюдат ься одновременно. Под облаками опасность предст авляют шквалист ые ветры, достигающие иногда ураганной силы, смерчи, ливневые осадки (дождь, град, снежные заряд ы), между облаками сильные нисх одящие и восходящ ие воздушные потоки, сд виги ветра.


Для образования грозового облака необходимы след ующ ие условия:

1. Вертикально направленные восходящие пот оки воздуха (конвекция).

2. Большое влагосодержание возд уха (абсолютная влажность а > 13 г/м3 или упр угость

водяного пара е > 15 гПа).

3. Большая положительная энергия неустойчивост и в тропосфере (до 400 гПа). Вертикальный

т емпературный градиент γ > 0,65°С/100 м.

Условно развитие грозового облака можно разделить на три ст адии (рис. 9.6).

Рис. 9.6. Стадия развития грозового облака

I стадия начальное развитие – от появления кучевого облака д о начала выпадения ливневых осадков. В эт ой стадии кучевые облака постепенно перерастают в мощ но-кучевые, а затем в кучево-дождевые “лысые”, из которых и начинают выпадать осадки. В облаках преобладают восходящие потоки, которые усиливаются от 2…5 м/с в кучевых облаках до

10...15 м/с в мощно-кучевых. Верхняя граница кучевых облаков 1,5…2,5 км, а мощно-кучевых –

4…6 км. Они состоят из капель воды. В кучево-дождевом “лысом” облаке начинает ся оледенение верх ней част и, и она уже состоит из переохлажд енных капель, снежинок и ледяных крист аллов. Скорости восходящих потоков в таких облаках могут достигать

20…25 м/с, а верх няя граница – 7…8 км. Переход от кучевого облака к мощно-кучевому происходит довольно медленно, а от мощно-кучевого к кучево-дождевому – очень быстро (1 час и менее). Вертикальная скорость подъема вершины облака в среднем равна 1 м/с, а в определенных случаях может д остигать 10 м/с. Межд у облаками наблюдаются нисходящие потоки воздуха.

II стадия – максим альное развитие – грозовое об лако из кучево-дождевого “лысого” развивается в кучево-дождевое “волосатое”. Из облака выпад ают ливневые осадки. Возникают электрические разряды в виде молний. Во вт орой ст адии в грозовом облаке наблюдаются интенсивные восходящие и нисходящие движения воздуха. Восходящ ие потоки достигают максимальных скоростей 30…40 м/с и более. Они преобладают в передней части облака. Скорост ь восход ящего пот ока в облаке почт и линейно растет с высотой, начиная с основания, и достигает максимального значения в пред вершинной части облака, после чего к верш ине облака скорость начинает линейно убывать. За счет ливневых осадков об разуются нисходящие потоки со скоростью 10…15 м/с. Нисх одящие потоки наиболее развиты в т ыловой части облака. Особенностью вертикальных пот оков внутри облака


является их сильная порывистост ь. Порывы могут дост игат ь 15 м/с и вызывать при бросках перегрузку самолет а до 2g и более. Внутри облака образует ся много вихрей разного размера, которые привод ят к инт енсивной турбулентности, вызывающей сильную болтанку ВС. Сильная т урб улентность наблюдается также и над верхней границей грозовых облаков (рис. 9.7).

Рис. 9.7. Движения воздуха над в ершинами грозовых облаков

Над куполообразной вершиной кучево-дождевых облаков, не имеющей наковальни или выст упающеей из наковальни, в слое 200…300 м от облака имеют место сильные восходящие пот оки. Опасная т урб улент ност ь в эт ом случае наблюд ается в непосредственной близости к облаку, в слое 50…100 м. В зоне восходящих потоков самолет тянет вверх.

Над плоской вершиной в слое 200…300 м наблюдает ся нисх одящий пот ок. ВС,

попадающие в наковальню или пролетающие вблизи нее, верт икальными потоками могут быт ь втянуты в облако.

У внешних границ кучево-дождевых облаков чаще всего наб людаются нисходящие движения возд уха в сочет ании с турбулентностью. При подходе к облакам болтанка ВС может появляться на удалении, примерно равном диаметру облака.

Сильные восход ящие потоки, характерные для кучево-дождевых облаков, способ ны удерживать во взвешенном состоянии крупные капли воды, кот орые в зоне отрицательных температ ур находятся в переохлажденном состоянии, поэ тому в гр озовых облаках на всех высотах выш е нулевой изотермы наблюдается очень сильное обледенение ВС.

Большую опасность для полетов в грозовых облаках и под ними представляет град.

Выпадение града происход ит не при каждой грозе. Над Европой в равнинной мест ност и выпадение града происходит один раз в среднем на 10…15 случаев. В горных районах грозы с градом бывают чаще.

Выпадение крупного града является стихийным бедствием. От него сильно страдают посевы, фруктовые сады, виноградники, домаш ний скот на пастбищах. Град может пробиват ь обшивку ВС на ст оянках аэродромов. В полете, при попад ании в град, повреждаются обшивка фюзеляжа, особенно перкалевая обшивка ст абилизаторов вертолетов, остекление кабины экипажа, обтекатели ант енн и другие, сравнительно непрочные элементы конструкции ВС.

Во второй стадии большую опасность представляют явления, наблюдаемые под

грозовы ми облаками.

В передней части грозового об лака иногда образуется темный крутящ ийся вал из разорванных об лаков, кот орый называется шкваловым воротом . Он возникает на высот е

500…600 м (может опускат ься и до 50 м) на границе восходящего потока в облаке и нисходящего потока вне облака. Шкваловый ворот имеет большие скорост и вращения и является крайне опасным явлением. При высоких температурах, больш ой влажност и воздуха и сильной неустойчиво сти в ат мосфере конец шквалового ворот а может опускаться до земли, образуя сильный вихрь с приб лизительно вертикальной осью вращ ения и диаметром в


несколько десятков мет ров. Эт от вихрь называется см ерчем . Смерчи обладают большой разруш ительной силой. Их прохождение связано с большими кат астрофическими разруш ениями на земле. Пыль, об ломки разных предмет ов и даже животные и люди могут подниматься вверх этими пот оками и переносит ься на значительные расст ояния.

Вторая опасная зона под грозовыми облаками наблюдается межд у восходящими и нисходящ ими потоками воздуха в области ливневых осадков. Это зона шквалов. Ширина ее не превы шает 500 м. В высот у ш квал прост ирается до 2…3 км, его продолжительность несколько минут. У земли шквал проявляется как резкое усиление ветра, сопровождающееся изменением его направления почти на 180°. Ветер в зоне шквалов может д остигать силы урагана (более 29 м/с). Ш квал опасен для возд уш ных судов, находящихся в полет е на малых высот ах, а также д ля авиационной техники и различных легких построек, расположенных на аэродроме.

III стадия – стадия разрушения – ливневые осадки, выпадающ ие из грозового облака, ох лаждают воздух и подстилающую поверхность под облаком. Поэтому ослабевают, а затем прекращ аются восходящие пот оки. В данной ст адии в грозовом облаке преоб ладают нисходящ ие пот оки, которы е размывают это облако. Разруш ение грозового облака обычно начинается с нижней част и. Облако оседает и расширяет ся по площади. Скорость опускания верш ины равна 1…1,5 м/с, иногда 3 м/с. Нижняя граница грозового облака приобретает своеобразный вид – она становит ся вымеобразной. Вершина облака плоская и состоит из перистых облаков волокнистой ст рукт уры. В среднем ярусе к грозовому облаку примыкают высоко-кучевые об лака, а в нижнем – слоисто-кучевые облака.

В третьей стадии в грозовом облаке наблюдаются все опасные явления, которые х арактерны для второй стад ии, но по мере разрушения облака их интенсивность уменьшается.

Весь период развит ия грозового облака занимает от 3 до 5 часов.

Руководящ ие документы ГА запрещают пред намеренно входить в грозовые облака в люб ой ст адии их развития, так как в грозовых облаках и в непосредственной близост и от них прямую опасность д ля полетов представляют:

Порывистые восходящие и нисход ящие пот оки возд уха с больш ими скоростями,

приводящие к внезапным броскам ВС;

Интенсивное обледенение на всех высотах выше нулевой изот ермы;

Электрические разряды в вид е молний;

Град, вызы вающ ий механические повреждения ВС;

Сильные атмосферные помех и, нарушающие радиосвязь;

Ливневые осадки с ограниченной видимостью;

Шквалы и смерчи;

Сдвиги ветра в приземном слое.

Грозовые облака по своему составу являют ся смеш анными (рис. 9.8). Они состоят из

капель воды, снежинок и ледяных крист аллов. Обычно на нижней границе облака т емпература воздуха +5°С…+10°С, а на верхней границе, в зависимости от верт икальной мощности облака, она может быть -40°С…-65°С. Эт о обуславливает неод нородную структуру облака по его составу.

От основания облака до уровня нулевой изотермы облако состоит из капель воды, от

уровня нулевой изот ермы до уровня изотермы -20°С – из снежинок и переох лажденных капель воды, которые в этом слое преоб ладают; выш е уровня изот ермы -20°С преобладают уже снежинки и ледяные крист аллы.

При грозе в ат мосфере происход ят э лектрические разряды. Для возникновения э лектрических разрядов необходимо образование в грозовом облаке объемных электрических зарядов. Такие заряды создают ся в результ ате электризации облачных элемент ов - капель и ледяных кристаллов.


Рис. 9.8. Микроструктура грозового облака

Существует много (около 35) теорий образования объемных электрических зарядов в кучево-дождевых облаках. Наиб олее распространенной является теория образования элект рических зарядов в грозовом облаке вследствие дробления капель и кристаллов.

Под дейст вием сильных порывов восх одящих потоков крупные капли, об разовавшиеся в нижней части облака, разбрызгиваются. При эт ом происх одит их элект ризация. Мелкие капли заряжаются отрицат ельно и уносятся вверх. Крупные капли с положит ельным заряд ом ост аются в нижней части облака. В верхней части грозового облака электризация происходит, по-видимому, за счет т рения крист аллов и их раскалывания при ст олкновениях. Мелкие осколки заряжают ся положит ельно, крупные - от рицательно. Крупные осколки опускаются вниз и усиливают отрицат ельный заряд середины облака. Мелкие осколки, заряженные положительно, остаются во взвешенном состоянии в верхней част и облака.

Но не только т ак могут заряжаться грозовые облака. Облачные капли при своем движении замерзают и тают. Каждый из э тих процессов также приводит к электризации облачных частиц. Таким образом, электризация может происходить при следующих процессах:

− при крат ковременном контакте крупных и мелких капель;

− при разбрызгивании капель и дроблении кристаллов в результат е сильных восходящих и

нисх одящих пот оков внутри облака;

− при т рении кристаллов.

В результате электризации капель и кристаллов и переноса их воздушными пот оками в облаке образуются област и с мощными объемными зарядами. Среднее распределение элект рических зарядов в грозовом облаке приведено на рис 9.9.

Отрицательные электрические заряды сосредоточены в основном в тыловой и средней части облака от нижней границы до изотермы -20°С, а положительные заряды - в передней част и облака, где имеют ся мощные восходящие пот оки воздуха, а также вы ше изот ермы -20°С.

Если напряженност ь элект рического поля между двумя объ емными зарядами в облаке

или между об лаками и землей дост игает величины пробивного потенциала воздуха (около

30000 В/см), то происходит электрический разряд. Такие разряды, сопровождающиеся ослепительной вспышкой света и раскат ами грома, назы вают ся молния ми .

Гром - явление акустическое, основной его причиной является ударная волна,

возникающая в результат е разрыва разрядного канала.

По внешнему виду и физическим особенностям молнии подразделяют ся на линейную разветвленную, плоскую и ш аровую.


Рис. 9.9. Электрическая структура грозового облака

Линейная разветвленная молния - эт о наиболее часто наблюд ающийся гигантский искровой разряд атмосферного электричест ва. Длина молнии в среднем сост авляет 2…3 км, а иногда может дост игать 20 км и более. От основного канала имеется несколько ответвлений, поэтому линейная молния похожа по внешнему вид у на сух ую вет вь лиственного дерева. Скорость молнии сост авляет около 102…103 км/с. Сила тока внутри канала молнии порядка д есятков тысяч ампер. Температура плазмы в молнии превыш ает 10000°С. Линейная молния возможна внут ри грозового облака, межд у обл аком и землей, межд у д вумя облаками.

Плоская молния представляет собой б есшумное красноватое свечение какой-либо части облака, возникающее за счет суммарного эффекта большого количества коронных разрядов на облачных частицах. Продолжительность т акой молнии около 1 секунды. Плоскую молнию не нужно смешиват ь с зарницей, когда облака освещаются удаленной и непосредственно невидимой линейной молнией.

Шаровая м олния - это довольно редкое и загадочное явление. Она пред ставляет собой круглую светящуюся массу размером с кулак, иногда с арбуз и более. Природа шаровой молнии полностью не раскрыта. Считают, что это скопление плазмы, возникающ ее после об ычной линейной молнии.

При полете в грозовом облаке или вблизи него может произойти попадание молнии в ВС.

Это возможно в двух случаях:

− ВС нах одится на пути молнии;

− напряженност ь электрического поля между объ емным зарядом в облаке и объ емным зарядом ВС больше пробивного потенциала возд уха.

В результ ате попадания молнии в ВС может произойт и:

− разгерметизация кабины;

− пожар на ВС;

− ослепление экипажа;

− разрушение об шивки, отд ельных дет алей и радиотехнических средств;

− намагничивание стальных сердечников в приборах и др.

Вероятность поражения ВС молнией возраст ает с увеличением их массы и скорости

полета. Наиболее часто поражаются молнией радиоантенны, крылья, ст абилизатор и фюзеляж. Существенно реже происходит поражение т опливных баков, но э ти случаи обычно имеют тяжелые последствия.


С грозовыми разрядами тесно связаны атмосферные радиопомехи (атм осферики ) . Это электромагнитные импульсы, которые возникают в процессе грозового разряда. Распространяясь от места своего возникновения, атмосферики вызывают радиопомехи - особ енно на длинных волнах. Они создают ш умы и треск в телефонах. Чем больше напряженность электрического поля в грозовом об лаке, тем сильнее атмосферные рад иопомехи.

Гроза всегда вызывает у меня восхищение и чувство уважения к природе. В ней есть что-то таинственное, но самое приятное - сидеть дома и смотреть в окно, любуясь стихией .

Почему происходит гроза

Гроза - яркое природное явление в атмосфере. В одно время на нашей планете происходит до 2000 гроз. Возникают в атмосферных фронтах , когда холодные массы воздуха вытесняют теплые. В течение года в умеренных широтах происходит около 20 гроз, а на участках близких к экватору , почти половина года приходится на это явление. Реже всего грозы встречаются над океанами.


Зарождается гроза из высокого белого облака, которое стремительно увеличивается. Эти облака - исполины, толщина их может превышать 10 километров . Нижняя часть всегда плоская , а когда верхняя часть доходит до стратосферы , оно сплющивается, принимая форму наковальни . Ураганный ветер - постоянный спутник грозы, часто формирующий грозовой шквал - резкий порыв ветра. Бывали случаи, когда шквалы причиняли сильные разрушения. Перед возникновением грозы, как правило, очень душно и жарко . Прогретый воздух устремляется вверх, все выше и выше, порой достигая высоты в несколько километров. Там он охлаждается и уже не может сдерживать влагу. Так образуются облака, однако поступление теплого воздуха не прекращается, облака сгущаютс я , тем самым формируя грозовые тучи .


Еще один спутник грозы - молния , распространяющаяся в атмосфере со скоростью света . Поэтому ее вспышку мы наблюдаем в то самое время, когда происходит сам разряд. В облаке молекулы при движении трутся, что способствует появлению напряжения . Температура разряда свыше 25000 градусов, и она настолько прогревает воздух, что он расширяется со сверхзвуковой скоростью . Так мы слышим гром. Иногда можно наблюдать шаровые молнии - огненные шары, чья природа до сих пор остается загадкой. Нередки случаи, когда такой шар, плывя над земной поверхностью, попадает в помещение вместе со сквозняком.


Меры безопасности

Во время разгула этой стихии, необходимо придерживаться следующих мер безопасности:

  • находиться как можно дальше от окон ;
  • не приближаться к металлическим конструкциям;
  • не оставаться на открытых участках;
  • противопоказано купаться в водоемах.

Самое богатое грозами место

С появлением спутников стало возможным наблюдать атмосферные явления по всему земному шару. Так было установлено место, которое по праву можно считать чемпионом по количеству гроз - город Тороро в Уганде . Здесь в году насчитывается 260 грозовых дней .

В легендах и мифологических сказаниях всех народов мира присутствует такое таинственное и величественное природное явления как гроза. Неистовство природы всегда пугало и восхищало человека своей колоссальной силой и дикой неконтролируемой красотой.

Воспевалось это смешение влаги, силы ветра и электричества также в литературных произведениях гениальных поэтов, писателей и художников. Но что же представляется собой это восхитительное событие?

Научное обоснование грозовых явлений

Современными метеорологами под грозой понимается природная активность, при которой возникают электрические разряды, именуемые молниями, а также наблюдаются звуковые раскаты.

Ненастье сопровождается значительной силы ветром, чаще всего выпадают осадки.

Ученые выяснили, что более всего распространены такие явления над континентами, а вот мировой океан подвергается этому погодному чуду в десять раз реже.

Грозы образуются в кучевых облаках, имеющих сравнительно небольшую высоту. Основание таких облаков выглядит темным свинцовым полотном. Иногда облако может сочетать в себе различные оттенки, вплоть до желтоватых, что объясняется учеными как проявление различной плотности облачного слоя. По краям такие тучи имеют ярко белое, даже блестяще отсвечивание.

Причинами грозовых явлений, по данным метеорологов, становится различное атмосферное давление и уровень абсолютной и относительной влажности, а также воздушные вихревые потоки. Нисходящие потоки могут проявляться на земле порывами шквального ветра, который может быть различной силы.

Повышенная опасность грозы заключается в частом проявлении электрических разрядов, нередко соединяющихся с поверхностью земли и высокими предметами. Сила таких разрядов способна воспламенить или оплавить даже самые негорючие материалы, а также вывести из строя оборудование.

Молния может быть представлена обычной формой и шаровой ее разновидностью. Менее всего изучены шаровые молнии, образование которых сложно воспроизвести, а за развитием ситуации практически невозможно следить. Поведение такой молнии непредсказуемо, а период ее существования в пространстве намного превышает время существования линейного разряда.

Мифологическое отображение гроз

Древние народы всего мира обожествляли такое величественное и пугающее явление как . Во всех стадиях язычества встречаются у народностей свои боги-громовержцы и покровители ветров и раскатов грома. Как правило, это свирепые и сильные боги, отражающие характер стихийного явления.

Например, славяне, предпочитавшие бояться, нежели как греки восхищаться своими богами, имели сразу несколько покровителей: Перуна, Стрибога, Сварожича и прочих. Их изображения были поистине пугающими и характеризовали панический страх людей прошлого перед силами природы.

Греческим воплощением грозы, стал великий Зевс, оружием которого были молнии. Признание громовержца самым великим среди олимпийских обитателей указывает на тот факт, что грозы были самым опасным и непредсказуемым явлением для Древней Греции. Грозу греки считали выражением божьим и поклонялись ее красоте и силе. Приобщен к неистовству стихии был и бог-кузнец Гефест.

Высшим почтением пользовался и громовержец Юпитер у древних римлян. Они также благоговели и трепетали пред лицом ужасающей грозы, отдавая ей место самого мощного и страшного среди необъяснимых явлений.

Скандинавские народы также питали особое уважение к Тору, управлявшему громом и молниями.

Народы всего мира наделяли своих могущественных покровителей силой управлять грозами, так как считали данное природное явление самым опасным. Не понимая его истинных причин, люди испытывали панический страх перед непредсказуемой, карающей стихией. Ацтеки приносили жертвы, чтобы задобрить разбушевавшихся богов. Впрочем, жертвоприношением «грешили» не только жители Южной Америки, этот обряд в той или иной степени присутствовал у всех народов мира.

Гроза в искусстве

Нашла свое отражение необузданная стихия и в произведениях искусства.

Художники не просто поклонялись мощи и силе грозы, но и воспевали ее дикую красоту. Разгул бушующей природы отобразили на своих полотнах Н. Крымов, С. Сухово-Кобылина, Васильев и прочие.

Описания неистовства стихии есть в таких известных литературных произведениях как , одноименном творении Набокова. Тематика грозовых явлений затронута в стихах Тютчева, Фета, Лермонтова и Пушкина.

Не менее, эффектным и мощным стало отображение непередаваемого трепета перед величественной стихией в музыке. Покоряет и завораживает своим звучанием опера Б. Асафьева. Не уступают в искусности звуковых сочетаний и глубине тематики одноименные оперы Дзержинского, Кашперова и, конечно, Трамбицкого.

Современное искусство отражает грозу в экранизациях классических творений известных писателей и поэтов. Кроме того, сегодня режиссеры одаривают своих зрителей фантастическими фильмами, в которых красочно описывается природное негодование. Детские супергерои наделяются умением отражать или управлять молниями и громовыми раскатами, а также вызывать смерчи и ураганы.

Таким образом, сегодня люди также восхищаются силой и величием погодных явлений, несмотря на то, что давно изучили их природу.

Опасность грозы

Разразившееся ненастье уже давно никого не удивляет, мы воспринимаем случившееся как факт и стараемся укрыться от непогоды. К большому сожалению, удается это не всем, поэтому ежегодно статистика приводит печальные сведения о жертвах грозы.

Бешеная и неуправляемая сила природной стихии является одним из самых опасных факторов для человека, поэтому, любуясь завораживающей красотой и воспевая могущество, не стоит забывать и о жестокости грома, молнии и ветра.

Удивительное явление опасно, прежде всего, тем, что оно непредсказуемо. Если синоптики с некоей долей вероятности и могут дать прогноз о возникновении грозового фронта, то определить даже приблизительно, в какое место придется удар молнии на современном этапе невозможно. Не могут также защитить нас ученые и от шаровых молний.

Единственным спасением для человека остаются громоотводы и заземленные предметы, а также нехитрые правила поведения при непогоде.