На что влияет кэш процессора в играх. Новый подход к кэшированию процессора. Методы записи кэша

Компьютерные процессоры сделали значительный рывок в развитии за последние несколько лет. Размер транзисторов с каждым годом уменьшается, а производительность растет. При этом закон Мура уже становится неактуальным. Что касается производительности процессоров, то следует учитывать, не только количество транзисторов и частоту, но и объем кэша.

Возможно, вы уже слышали о кэш памяти когда искали информацию о процессорах. Но, обычно, мы не обращаем много внимания на эти цифры, они даже не сильно выделяются в рекламе процессоров. Давайте разберемся на что влияет кэш процессора, какие виды кэша бывают и как все это работает.

Если говорить простыми словами, то кэш процессора это просто очень быстрая память. Как вы уже знаете, у компьютера есть несколько видов памяти. Это постоянная память, которая используется для хранения данных, операционной системы и программ, например, SSD или жесткий диск. Также в компьютере используется оперативная память. Это память со случайным доступом, которая работает намного быстрее, по сравнению с постоянной. И наконец у процессора есть ещё более быстрые блоки памяти, которые вместе называются кэшем.

Если представить память компьютера в виде иерархии по её скорости, кэш будет на вершине этой иерархии. К тому же он ближе всего к вычислительным ядрам, так как является частью процессора.

Кэш память процессора представляет из себя статическую память (SRAM) и предназначен для ускорения работы с ОЗУ. В отличие от динамической оперативной памяти (DRAM), здесь можно хранить данные без постоянного обновления.

Как работает кэш процессора?

Как вы, возможно, уже знаете, программа — это набор инструкций, которые выполняет процессор. Когда вы запускаете программу, компьютеру надо перенести эти инструкции из постоянной памяти в процессору. И здесь вступает в силу иерархия памяти. Сначала данные загружаются в оперативную память, а потом передаются в процессор.

В наши дни процессор может обрабатывать огромное количество инструкций в секунду. Чтобы по максимуму использовать свои возможности, процессору необходима супер быстрая память. Поэтому был разработан кэш.

Контроллер памяти процессора выполняет работу по получению данных из ОЗУ и отправке их в кэш. В зависимости от процессора, используемого в вашей системе, этот контроллер может быть размещен в северном мосту материнской плате или в самом процессоре. Также кэш хранит результаты выполнения инструкций в процессоре. Кроме того, в самом кэше процессора тоже есть своя иерархия.

Уровни кэша процессора — L1, L2 и L3

Веся кэш память процессора разделена на три уровни: L1, L2 и L3. Эта иерархия тоже основана на скорости работы кэша, а также на его объеме.

  • L1 Cache (кэш первого уровня) — это максимально быстрый тип кэша в процессоре. С точки зрения приоритета доступа, этот кэш содержит те данные, которые могут понадобиться программе для выполнения определенной инструкции;
  • L2 Cache (кэш второго уровня процессора) — медленнее, по сравнению L1, но больше по размеру. Его объем может быть от 256 килобайт до восьми мегабайт. Кэш L2 содержит данные, которые, возможно, понадобятся процессору в будущем. В большинстве современных процессоров кэш L1 и L2 присутствуют на самих ядрах процессора, причём каждое ядро получает свой собственный кэш;
  • L3 Cache (кэш третьего уровня) — это самый большой и самый медленный кэш. Его размер может быть в районе от 4 до 50 мегабайт. В современных CPU на кристалле выделяется отдельное место под кэш L3.

На данный момент это все уровни кэша процессора, компания Intel пыталась создать кэш уровня L4, однако, пока эта технология не прижилась.

Для чего нужен кэш в процессоре?

Пришло время ответить на главный вопрос этой статьи, на что влияет кэш процессора? Данные поступают из ОЗУ в кэш L3, затем в L2, а потом в L1. Когда процессору нужны данные для выполнения операции, он пытается их найти в кэше L1 и если находит, то такая ситуация называется попаданием в кэш. В противном случае поиск продолжается в кэше L2 и L3. Если и теперь данные найти не удалось, выполняется запрос к оперативной памяти.

Теперь мы знаем, что кэш разработан для ускорения передачи информации между оперативной памятью и процессором. Время, необходимое для того чтобы получить данные из памяти называется задержкой (Latency). Кэш L1 имеет самую низкую задержку, поэтому он самый быстрый, кэш L3 — самую высокую. Когда данных в кэше нет, мы сталкиваемся с еще более высокой задержкой, так как процессору надо обращаться к памяти.

Раньше, в конструкции процессоров кєши L2 и L3 были были вынесены за пределы процессора, что приводило к высоким задержкам. Однако уменьшение техпроцесса, по которому изготавливаются процессоры позволяет разместить миллиарды транизисторов в пространстве, намного меньшем, чем раньше. Как результат, освободилось место, чтобы разместить кэш как можно ближе к ядрам, что ещё больше уменьшает задержку.

Как кэш влияет на производительность?

Влияние кэша на произвоидтельность компьютера напрямую зависит от его эффективности и количества попаданий в кэш. Ситуации, когда данных в кэше не оказывается очень сильно снижают общую производительность.

Представьте, что процессор загружает данные из кэша L1 100 раз подряд. Если процент попаданий в кэш будет 100%, процессору понадобиться 100 наносекунд чтобы получить эти данные. Однако, как только процент попаданий уменьшится до 99%, процессору нужно будет извлечь данные из кэша L2, а там уже задержка 10 наносекунд. Получится 99 наносекунд на 99 запросов и 10 наносекунд на 1 запрос. Поэтому уменьшение процента попаданий в кэш на 1% снижает производительность процессора 10%.

В реальном времени процент попаданий в кэш находится между 95 и 97%. Но как вы понимаете, разница в производительности между этими показателями не в 2%, а в 14%. Имейте в виду, что в примере, мы предполагаем, что прощенные данные всегда есть в кэше уровня L2, в реальной жизни данные могут быть удалены из кэша, это означает, что их придется получать из оперативной памяти, у которой задержка 80-120 наносекунд. Здесь разница между 95 и 97 процентами ещё более значительная.

Низкая производительность кэша в процессорах AMD Bulldozer и Piledriver была одной из основных причин, почему они проигрывали процессорам Intel. В этих процессорах кэш L1 разделялся между несколькими ядрами, что делало его очень не эффективным. В современных процессорах Ryzen такой проблемы нет.

Можно сделать вывод, чем больше объем кэша, тем выше производительность, поскольку процессор сможет получить в большем количестве случаев нужные ему данные быстрее. Однако, стоит обращать внимание не только на объем кэша процессора, но и на его архитектуру.

Выводы

Теперь вы знаете за что отвечает кэш процессора и как он работает. Дизайн кэша постоянно развивается, а память становится быстрее и дешевле. Компании AMD и Intel уже провели множество экспериментов с кэшем, а в Intel даже пытались использовать кэш уровня L4. Рынок процессоров развивается куда быстрее, чем когда-либо. Архитектура кэша будет идти в ногу с постоянно растущей мощностью процессоров.

Кроме того, многое делается для устранения узких мест, которые есть у современных компьютеров. Уменьшение задержки работы с памятью одна из самых важных частей этой работы. Будущее выглядит очень многообещающе.

Похожие записи.

Приветствуем вас на сайте GECID.com! Хорошо известно, что тактовая частота и количество ядер процессора напрямую влияют на уровень производительности, особенно в оптимизированных под многопоточность проектах. Мы же решили проверить, какую роль в этом играет кэш-память уровня L3?

Для исследования этого вопроса нам был любезно предоставлен интернет-магазином pcshop.ua 2-ядерный процессор с номинальной рабочей частотой 3,7 ГГц и 3 МБ кэш-памяти L3 с 12-ю каналами ассоциативности. В роли оппонента выступил 4-ядерный , у которого были отключены два ядра и снижена тактовая частота до 3,7 ГГц. Объем же кэша L3 у него составляет 8 МБ, и он имеет 16 каналов ассоциативности. То есть ключевая разница между ними заключается именно в кэш-памяти последнего уровня: у Core i7 ее на 5 МБ больше.

Если это ощутимо повлияет на производительность, тогда можно будет провести еще один тест с представителем серии Core i5, у которых на борту 6 МБ кэша L3.

Но пока вернемся к текущему тесту. Помогать участникам будет видеокарта и 16 ГБ оперативной памяти DDR4-2400 МГц. Сравнивать эти системы будем в разрешении Full HD.

Для начала начнем с рассинхронизированных живых геймплев, в которых невозможно однозначно определить победителя. В Dying Light на максимальных настройках качества обе системы показывают комфортный уровень FPS, хотя загрузка процессора и видеокарты в среднем была выше именно в случае Intel Core i7.

Arma 3 имеет хорошо выраженную процессорозависимость, а значит больший объем кэш-памяти должен сыграть свою позитивную роль даже при ультравысоких настройках графики. Тем более что нагрузка на видеокарту в обоих случаях достигала максимум 60%.

Игра DOOM на ультравысоких настройках графики позволила синхронизировать лишь первые несколько кадров, где перевес Core i7 составляет около 10 FPS. Рассинхронизация дельнейшего геймплея не позволяет определить степень влияния кэша на скорость видеоряда. В любом случае частота держалась выше 120 кадров/с, поэтому особого влияния даже 10 FPS на комфортность прохождения не оказывают.

Завершает мини-серию живых геймплеев Evolve Stage 2 . Здесь мы наверняка увидели бы разницу между системами, поскольку в обоих случаях видеокарта загружена ориентировочно на половину. Поэтому субъективно кажется, что уровень FPS в случае Core i7 выше, но однозначно сказать нельзя, поскольку сцены не идентичные.

Более информативную картину дают бенчмарки. Например, в GTA V можно увидеть, что за городом преимущество 8 МБ кэша достигает 5-6 кадров/с, а в городе - до 10 FPS благодаря более высокой загрузке видеокарты. При этом сам видеоускоритель в обоих случаях загружен далеко не на максимум, и все зависит именно от CPU.

Третий ведьмак мы запустили с запредельными настройками графики и высоким профилем постобработки. В одной из заскриптованных сцен преимущество Core i7 местами достигает 6-8 FPS при резкой смене ракурса и необходимости подгрузки новых данных. Когда же нагрузка на процессор и видеокарту опять достигают 100%, то разница уменьшается до 2-3 кадров.

Максимальный пресет графических настроек в XCOM 2 не стал серьезным испытанием для обеих систем, и частота кадров находилась в районе 100 FPS. Но и здесь больший объем кэш-памяти трансформировался в прибавку к скорости от 2 до 12 кадров/с. И хотя обоим процессорам не удалось по максимум загрузить видеокарту, вариант на 8 МБ и в этом вопросе местами преуспевал лучше.

Больше всего удивила игра Dirt Rally , которую мы запустили с пресетом очень высоко. В определенные моменты разница доходила до 25 кадров/с исключительно из-за большего объема кэш-памяти L3. Это позволяло на 10-15% лучше загружать видеокарту. Однако средние показатели бенчмарка показали более скромную победу Core i7 - всего 11 FPS.

Интересная ситуация получилась и с Rainbow Six Siege : на улице, в первых кадрах бенчмарка, преимущество Core i7 составляло 10-15 FPS. Внутри помещения загрузка процессоров и видеокарты в обоих случаях достигла 100%, поэтому разница уменьшилась до 3-6 FPS. Но в конце, когда камера вышла за пределы дома, отставание Core i3 опять местами превышало 10 кадров/с. Средний же показатель оказался на уровне 7 FPS в пользу 8 МБ кэша.

The Division при максимальном качестве графики также хорошо реагирует на увеличение объема кэш памяти. Уже первые кадры бенчмарка по полной загрузили все потоки Core i3, а вот общая нагрузка на Core i7 составляла 70-80%. Однако разница в скорости в эти моменты составляла всего 2-3 FPS. Чуть позже нагрузка на оба процессора достигла 100%, а разница в определенные моменты уже была за Core i3, но лишь на 1-2 кадра/с. В среднем же она составила около 1 FPS в пользу Core i7.

В свою очередь бенчмарк Rise of Tomb Rider при высоких настройках графики во всех трех тестовых сценах наглядно показал преимущество процессора с значительно большим объемом кэш памяти. Средние показатели у него на 5-6 FPS лучше, но если внимательно посмотреть каждую сцену, то местами отставание Core i3 превышает 10 кадров/с.

А вот при выборе пресета с очень высокими настройками возрастает нагрузка на видеокарту и процессоры, поэтому в большинстве своем разница между системами уменьшается до нескольких кадров. И лишь кратковременно Core i7 может показывать более значимые результаты. Средние показатели его преимущества по итогам бенчмарка снизились до 3-4 FPS.

Hitman также меньше подвержен влиянию кэш-памяти L3. Хотя и здесь при ультравысоком профиле детализации дополнительные 5 МБ обеспечили лучшую загрузку видеокарты, превратив это в дополнительные 3-4 кадра/с. Особо критичного влияния на производительность они не оказывают, но из чисто спортивного интереса приятно, что есть победитель.

Высокие настройки графики Deus ex: Mankind divided сразу же потребовали максимальной вычислительной мощности от обеих систем, поэтому разница в лучшем случае составляла 1-2 кадра в пользу Core i7, на что указывает и средний показатель.

Повторный запуск при ультравысоком пресете еще сильнее загрузил видеокарту, поэтому влияние процессора на общую скорость стало еще меньшим. Соответственно, разница в кэш-памяти L3 практически не влияла на ситуацию и средний FPS отличался менее чем на полкадра.

По итогам тестирования можно отметить, что влияние кэш-памяти L3 на производительность в играх действительно имеет место, но оно проявляется лишь тогда, когда видеокарта не загружена на полную мощность. В таких случаях можно было бы получить прирост в 5-10 FPS, если бы кэш увеличился в 2,5 раза. То есть ориентировочно получается, что при прочих равных каждый дополнительный МБ кэш-памяти L3 добавляет только 1-2 FPS к скорости отображения видеоряда.

Так что, если сравнивать соседние линейки, например, Celeron и Pentium, или модели с разным объем кэш-памяти L3 внутри серии Core i3, то основной прирост производительности достигается благодаря более высоким частотам, а потом и наличию дополнительных процессорных потоков и ядер. Поэтому, выбирая процессор, в первую очередь, все же, нужно ориентироваться на основные характеристики, а только потом обращать внимание на объем кэш-памяти.

На этом все. Спасибо за внимание. Надеемся, этот материал был полезным и интересным.

Статья прочитана 27046 раз(а)

Подписаться на наши каналы

Ч то является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени .

Понятие и виды кэш-памяти

К эшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

  • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и .
  • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.
  • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

Человеческим языком о том, как всё это работает

Ч тобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти ). Для доступа к ним достаточно протянуть руку.

Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти ). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск ).

Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство ).

Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования ). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память ).

Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем ). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно ).

Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств ). Но это всё равно медленнее, чем брать их со стола.

Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша ).

Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную ).

С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора .

Что такое кэш-память и её структура

Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память . Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.


Для чего нужна кэш-память процессора?

Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах , он дает значительный прирост производительности в любых приложениях.

Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

Уровни кэш-памяти процессора

Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

Чипы на большинстве современных настольных компьютеров имеют четыре ядра, но производители микросхем уже объявили о планах перехода на шесть ядер, а для высокопроизводительных серверов и сегодня 16-ядерные процессоры далеко не редкость.

Чем больше ядер, тем больше проблема распределения памяти между всеми ядрами при одновременной совместной работе. С увеличением числа ядер всё больше выгодно минимизировать потери времени на управлении ядрами при обработке данных - ибо скорость обмена данными отстает от скорости работы процессора и обработки данных в памяти. Можно физически обратиться к чужому быстрому кэшу, а можно к своему медленному, но сэкономить на времени передаче данных. Задача усложняется тем, что запрашиваемые программами объемы памяти не четко соответствуют объемам кэш-памяти каждого типа.

Физически разместить максимально близко к процессору можно только очень ограниченный объем памяти - кэш процесcора уровня L1, объем которого крайне незначителен. Даниэль Санчес (Daniel Sanchez), По-Ан Цай (Po-An Tsai) и Натан Бэкмен (Nathan Beckmann) - исследователи из лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института - научили компьютер конфигурировать разные виды своей памяти под гибко формируемую иерархию программ в реальном режиме времени. Новая система, названная Jenga, анализирует объемные потребности и частоту обращения программ к памяти и перераспределяет мощности каждого из 3 видов процессорного кэша в комбинациях обеспечивающих рост эффективности и экономии энергии.


Для начала исследователи протестировали рост производительности при комбинации статичной и динамической памяти в работе над программами для одноядерного процессора и получили первичную иерархию - когда какую комбинацию лучше применять. Из 2 видов памяти или из одного. Оценивались два параметра -задержка сигнала (латентность) и потребляемая энергия при работе каждой из программ. Примерно 40% программ стали работать хуже при комбинации видов памяти, остальные - лучше. Зафиксировав какие программы «любят» смешанное быстродействие, а какие - размер памяти, исследователи построили свою систему Jenga.

Они виртуально протестировали 4 виды программ на виртуальном компьютере с 36 ядрами. Тестировали программы:

  • omnet - Objective Modular Network Testbed, библиотека моделирования C и платформа сетевых средств моделирования (синий цвет на рисунке)
  • mcf - Meta Content Framework (красный цвет)
  • astar - ПО для отображения виртуальной реальности (зеленый цвет)
  • bzip2 - архиватор (фиолетовый цвет)


На картинке показано где и как обрабатывали данные каждой из программ. Буквы показывают, где выполняется каждое приложение (по одному на квадрант), цвета показывают, где находятся его данные, а штриховка указывает на второй уровень виртуальной иерархии, когда он присутствует.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Самой быстрой памятью является кэш первого уровня - L1-cache, поскольку расположена на одном с процессором кристалле. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Объём обычно невелик - не более 128 Кбайт.

С кэшем L1 взаимодействует кэш второго уровня - L2. Он является вторым по быстродействию. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже. В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД, его полноценное использование дает рост производительность в десятки раз.

Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2). L3 обычно расположен отдельно от ядра ЦП, но может быть большим - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании. Применение кэша третьего уровня оправдано в очень узком круге задач и может не только не дать увеличения производительности, но наоборот и привести к общему снижению производительности системы.

Отключение кэша второго и третьего уровней наиболее полезно в математических задачах, когда объём данных меньше размера кэша. В этом случае, можно загрузить все данные сразу в кэш L1, а затем производить их обработку.


Периодически Jenga на уровне ОС реконфигурирует виртуальные иерархии для минимизации объемов обмена данных, учитывая ограниченность ресурсов и поведение приложений. Каждая реконфигурация состоит из четырех шагов.

Jenga распределяет данные не только в зависимости от того, какие программы диспетчеризируются - любящие большую односкоростную память или любящие быстродействие смешанных кэшей, но и в зависимости от физической близости ячеек памяти к обрабатываемым данным. Независимо от того - какой вид кэша требует программа по умолчанию или по иерархии. Главное чтобы минимизировать задержку сигнала и энергозатраты. В зависимости от того, сколько видов памяти «любит» программа, Jenga моделирует латентность каждой виртуальной иерархии с одним или двумя уровнями. Двухуровневые иерархии образуют поверхность, одноуровневые иерархии - кривую. Затем Jenga проектирует минимальную задержку в размерах VL1, что дает две кривые. Наконец, Jenga использует эти кривые для выбора лучшей иерархии (то есть размера VL1).

Применение Jenga дало ощутимый эффект. Виртуальный 36-ядерный чип стал работать на 30 процентов быстрее и использовал на 85 процентов меньше энергии. Конечно, пока Jenga - просто симуляция работающего компьютера и пройдет некоторое время, прежде чем вы увидите реальные примеры этого кеша и еще до того, как производители микросхем примут его, если понравится технология.

Конфигурация условной 36 ядерной машины

  • Процессоры . 36 ядер, x86-64 ISA, 2.4 GHz, Silvermont-like OOO: 8B-wide
    ifetch; 2-level bpred with 512×10-bit BHSRs + 1024×2-bit PHT, 2-way decode/issue/rename/commit, 32-entry IQ and ROB, 10-entry LQ, 16-entry SQ; 371 pJ/instruction, 163 mW/core static power
  • Кэши уровня L1 . 32 KB, 8-way set-associative, split data and instruction caches,
    3-cycle latency; 15/33 pJ per hit/miss
  • Служба предварительной выборки Prefetchers . 16-entry stream prefetchers modeled after and validated against
    Nehalem
  • Кэши уровня L2 . 128 KB private per-core, 8-way set-associative, inclusive, 6-cycle latency; 46/93 pJ per hit/miss
  • Когерентный режим (Coherence) . 16-way, 6-cycle latency directory banks for Jenga; in-cache L3 directories for others
  • Global NoC . 6×6 mesh, 128-bit flits and links, X-Y routing, 2-cycle pipelined routers, 1-cycle links; 63/71 pJ per router/link flit traversal, 12/4mW router/link static power
  • Блоки статической памяти SRAM . 18 MB, one 512 KB bank per tile, 4-way 52-candidate zcache, 9-cycle bank latency, Vantage partitioning; 240/500 pJ per hit/miss, 28 mW/bank static power
  • Многослойная динамическая память Stacked DRAM . 1152MB, one 128MB vault per 4 tiles, Alloy with MAP-I DDR3-3200 (1600MHz), 128-bit bus, 16 ranks, 8 banks/rank, 2 KB row buffer; 4.4/6.2 nJ per hit/miss, 88 mW/vault static power
  • Основная память . 4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8 banks/rank, 8 KB row buffer; 20 nJ/access, 4W static power
  • DRAM timings . tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4, tWTR=4, tWR=8, tFAW=18 (все тайминги в tCK; stacked DRAM has half the tCK as main memory)